Skip to main content

Electron Microscope Detection of 5-Methylcytosine on DNA and RNA

  • Protocol
  • First Online:
Epitranscriptomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1870))

Abstract

5-Methylcytosine is the major epigenetic modification occurring on DNA. It is known to be involved not only in gene expression regulation but also in the control of chromatin structure. However, this modification is also found on different types of RNA, including mRNA. Generally, biomolecular techniques are applied for studying the epigenetic profile of nucleic acids. Here, we describe the ultrastructural detection of 5-methylcytosine as an unusual approach to localize this modification on chromatin regions and/or RNA single molecules. This tool requires a careful sample preparation to preserve antigen epitopes that will be revealed immunocytochemically by a specific anti-5-methylcytosine antibody. The multiple staining procedures that can be adopted allow the identification of both DNA or RNA. A semiquantitative analysis can also be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cmarko D, Verschure PJ, Martin TE, Dahmus ME, Krause S, Fu XD, van Driel R, Fakan S (1999) Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol Biol Cell 10(1):211–223

    Article  CAS  Google Scholar 

  2. Cmarko D, Verschure PJ, Otte AP, van Driel R, Fakan S (2003) Polycomb group gene silencing proteins are concentrated in the perichromatin compartment of the mammalian nucleus. J Cell Sci 116(Pt 2):335–343

    Article  CAS  Google Scholar 

  3. Puvion E, Puvion-Dutilleul F (1996) Ultrastructure of the nucleus in relation to transcription and splicing: roles of perichromatin fibrils and interchromatin granules. Exp Cell Res 229(2):217–225. https://doi.org/10.1006/excr.1996.0363

    Article  CAS  PubMed  Google Scholar 

  4. Spector DL (1996) Nuclear organization and gene expression. Exp Cell Res 229(2):189–197. https://doi.org/10.1006/excr.1996.0358

    Article  CAS  PubMed  Google Scholar 

  5. Choy MK, Movassagh M, Goh HG, Bennett MR, Down TA, Foo RS (2010) Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated. BMC Genomics 11:519. https://doi.org/10.1186/1471-2164-11-519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferguson LR, Tatham AL, Lin Z, Denny WA (2011) Epigenetic regulation of gene expression as an anticancer drug target. Curr Cancer Drug Targets 11(2):199–212

    Article  CAS  Google Scholar 

  7. Ngo TT, Yoo J, Dai Q, Zhang Q, He C, Aksimentiev A, Ha T (2016) Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. Nat Commun 7:10813. https://doi.org/10.1038/ncomms10813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jimenez-Useche I, Yuan C (2012) The effect of DNA CpG methylation on the dynamic conformation of a nucleosome. Biophys J 103(12):2502–2512. https://doi.org/10.1016/j.bpj.2012.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Motorin Y, Lyko F, Helm M (2010) 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res 38(5):1415–1430. https://doi.org/10.1093/nar/gkp1117

    Article  CAS  PubMed  Google Scholar 

  10. Squires JE, Preiss T (2010) Function and detection of 5-methylcytosine in eukaryotic RNA. Epigenomics 2(5):709–715. https://doi.org/10.2217/epi.10.47

    Article  CAS  PubMed  Google Scholar 

  11. Liu J, Jia G (2014) Methylation modifications in eukaryotic messenger RNA. J Genet Genomics 41(1):21–33. https://doi.org/10.1016/j.jgg.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  12. Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40(11):5023–5033. https://doi.org/10.1093/nar/gks144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dominissini D, Rechavi G (2017) 5-methylcytosine mediates nuclear export of mRNA. Cell Res 27(6):717–719. https://doi.org/10.1038/cr.2017.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harrison A, Parle-McDermott A (2011) DNA methylation: a timeline of methods and applications. Front Genet 2:74. https://doi.org/10.3389/fgene.2011.00074

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gehrke CW, McCune RA, Gama-Sosa MA, Ehrlich M, Kuo KC (1984) Quantitative reversed-phase high-performance liquid chromatography of major and modified nucleosides in DNA. J Chromatogr 301(1):199–219

    Article  CAS  Google Scholar 

  16. Bestor TH, Hellewell SB, Ingram VM (1984) Differentiation of two mouse cell lines is associated with hypomethylation of their genomes. Mol Cell Biol 4(9):1800–1806

    Article  CAS  Google Scholar 

  17. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831

    Article  CAS  Google Scholar 

  18. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862. https://doi.org/10.1038/ng1598

    Article  CAS  Google Scholar 

  19. Huang TH, Perry MR, Laux DE (1999) Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 8(3):459–470

    Article  CAS  Google Scholar 

  20. Gitan RS, Shi H, Chen CM, Yan PS, Huang TH (2002) Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 12(1):158–164. https://doi.org/10.1101/gr.202801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219. https://doi.org/10.1038/nature06745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257. https://doi.org/10.1038/nature09165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1):172–182. https://doi.org/10.1006/dbio.2001.0501

    Article  CAS  PubMed  Google Scholar 

  24. Kobayakawa S, Miike K, Nakao M, Abe K (2007) Dynamic changes in the epigenomic state and nuclear organization of differentiating mouse embryonic stem cells. Genes Cells 12(4):447–460. https://doi.org/10.1111/j.1365-2443.2007.01063.x

    Article  CAS  PubMed  Google Scholar 

  25. Hussain S, Aleksic J, Blanco S, Dietmann S, Frye M (2013) Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol 14(11):215. https://doi.org/10.1186/gb4143

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moyne G (1980) Methods in ultrastructural cytochemistry of the cell nucleus. Prog Histochem Cytochem 13(1):1–72

    Article  CAS  Google Scholar 

  27. Masiello I, Biggiogera M (2017) Osmium ammine for staining DNA in electron microscopy. Methods Mol Biol 1560:261–267. https://doi.org/10.1007/978-1-4939-6788-9_19

    Article  CAS  PubMed  Google Scholar 

  28. Biggiogera M, Masiello I (2017) Visualizing RNA at electron microscopy by terbium citrate. Methods Mol Biol 1560:277–283. https://doi.org/10.1007/978-1-4939-6788-9_21

    Article  CAS  PubMed  Google Scholar 

  29. Dundr M, Raska I (1993) Nonisotopic ultrastructural mapping of transcription sites within the nucleolus. Exp Cell Res 208(1):275–281. https://doi.org/10.1006/excr.1993.1247

    Article  CAS  PubMed  Google Scholar 

  30. Trentani A, Testillano PS, Risueno MC, Biggiogera M (2003) Visualization of transcription sites at the electron microscope. Eur J Histochem 47(3):195–200

    Article  CAS  Google Scholar 

  31. Bernhard W (1969) A new staining procedure for electron microscopical cytology. J Ultrastruct Res 27(3):250–265

    Article  CAS  Google Scholar 

  32. Vazquez-Nin GH, Biggiogera M, Echeverria OM (1995) Activation of osmium ammine by SO2-generating chemicals for EM Feulgen-type staining of DNA. Eur J Histochem 39(2):101–106

    CAS  PubMed  Google Scholar 

  33. Biggiogera M, Fakan S (1998) Fine structural specific visualization of RNA on ultrathin sections. J Histochem Cytochem 46(3):389–395. https://doi.org/10.1177/002215549804600313

    Article  CAS  PubMed  Google Scholar 

  34. Masiello I, Biggiogera M (2017) Ultrastructural localization of 5-methylcytosine on DNA and RNA. Cell Mol Life Sci 74(16):3057–3064. https://doi.org/10.1007/s00018-017-2521-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Francine Flach for excellent technical skill in preparing the ultrathin sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Biggiogera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Masiello, I., Biggiogera, M. (2019). Electron Microscope Detection of 5-Methylcytosine on DNA and RNA. In: Wajapeyee, N., Gupta, R. (eds) Epitranscriptomics. Methods in Molecular Biology, vol 1870. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8808-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8808-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8807-5

  • Online ISBN: 978-1-4939-8808-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics