Skip to main content

Detection and Quantification of Pseudouridine in RNA

  • Protocol
  • First Online:
Epitranscriptomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1870))

Abstract

Pseudouridylation is the most abundant of all RNA modifications. Pseudouridylation is dynamic and widespread among many different types of RNAs in living organisms, thus drawing a lot of recent interest from the RNA and epigenetics communities. To successfully carry out an investigation into RNA pseudouridylation, it is desirable to have a convenient and effective method capable of detection and quantification of pseudouridylation. Here, we present two such methods: one relies on pseudouridine (Ψ)-specific CMCT modification followed by reverse transcription/primer-extension (semiquantitative), and the other is based on site-specific cleavage and radiolabeling followed by nuclease digestion and TLC (quantitative). Although only semiquantitative, the CMCT and reverse transcription-based method is capable of detecting multiple Ψs (present in the same RNA molecule) in one reaction. In contrast, the second method, based on site-specific cleavage/labeling, nuclease digestion, and TLC, is quantitative, but can be used to analyze only one site at a time. These two methods can be used independently or in combination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu YT, Meier UT (2014) RNA-guided isomerization of uridine to pseudouridine—pseudouridylation. RNA Biol 11(12):1483–1494. https://doi.org/10.4161/15476286.2014.972855

    Article  PubMed  Google Scholar 

  2. Ferre-D’Amare AR (2003) RNA-modifying enzymes. Curr Opin Struct Biol 13(1):49–55

    Article  Google Scholar 

  3. Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 26(1):148–153

    Article  CAS  Google Scholar 

  4. Branlant C, Krol A, Machatt MA, Pouyet J, Ebel JP, Edwards K, Kossel H (1981) Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. Nucleic Acids Res 9(17):4303–4324

    Article  CAS  Google Scholar 

  5. Maden BE (1990) The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol 39:241–303

    Article  CAS  Google Scholar 

  6. Wu G, Yu AT, Kantartzis A, Yu YT (2011) Functions and mechanisms of spliceosomal small nuclear RNA pseudouridylation. Wiley Interdiscip Rev RNA 2(4):571–581. https://doi.org/10.1002/wrna.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515(7525):143–146. https://doi.org/10.1038/nature13802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Leon-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, Fink G, Regev A (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159(1):148–162. https://doi.org/10.1016/j.cell.2014.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lovejoy AF, Riordan DP, Brown PO (2014) Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One 9(10):e110799. https://doi.org/10.1371/journal.pone.0110799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11(8):592–597. https://doi.org/10.1038/nchembio.1836

    Article  CAS  PubMed  Google Scholar 

  11. Bakin A, Ofengand J (1993) Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32(37):9754–9762

    Article  CAS  Google Scholar 

  12. Bakin AV, Ofengand J (1998) Mapping of pseudouridine residues in RNA to nucleotide resolution. Methods Mol Biol 77:297–309. https://doi.org/10.1385/0-89603-397-X:297

    Article  CAS  PubMed  Google Scholar 

  13. Ho NW, Gilham PT (1967) The reversible chemical modification of uracil, thymine, and guanine nucleotides and the modification of the action of ribonuclease on ribonucleic acid. Biochemistry 6(12):3632–3639

    Article  CAS  Google Scholar 

  14. Ho NW, Gilham PT (1971) Reaction of pseudouridine and inosine with N-cyclohexyl-N′-beta-(4-methylmorpholinium)ethylcarbodiimide. Biochemistry 10(20):3651–3657

    Article  CAS  Google Scholar 

  15. Zhao X, Yu YT (2004) Detection and quantitation of RNA base modifications. RNA 10(6):996–1002

    Article  CAS  Google Scholar 

  16. Moore MJ, Sharp PA (1992) Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at the splice sites. Science 256(5059):992–997

    Article  CAS  Google Scholar 

  17. Schubert S, Gul DC, Grunert HP, Zeichhardt H, Erdmann VA, Kurreck J (2003) RNA cleaving ‘10-23’ DNAzymes with enhanced stability and activity. Nucleic Acids Res 31(20):5982–5992

    Article  CAS  Google Scholar 

  18. Cairns MJ, King A, Sun LQ (2003) Optimisation of the 10-23 DNAzyme-substrate pairing interactions enhanced RNA cleavage activity at purine-cytosine target sites. Nucleic Acids Res 31(11):2883–2889

    Article  CAS  Google Scholar 

  19. Wu G, Xiao M, Yang C, Yu YT (2011) U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP. EMBO J 30(1):79–89. https://doi.org/10.1038/emboj.2010.316

    Article  CAS  PubMed  Google Scholar 

  20. Lapham J, Yu YT, Shu MD, Steitz JA, Crothers DM (1997) The position of site-directed cleavage of RNA using RNase H and 2′-O-methyl oligonucleotides is dependent on the enzyme source. RNA 3(9):950–951

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the Yu laboratory for discussion and inspiration. The work carried out in the Yu laboratory was supported by grant GM104077 from NIH (to Y-T Yu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Adachi, H., DeZoysa, M.D., Yu, YT. (2019). Detection and Quantification of Pseudouridine in RNA. In: Wajapeyee, N., Gupta, R. (eds) Epitranscriptomics. Methods in Molecular Biology, vol 1870. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8808-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8808-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8807-5

  • Online ISBN: 978-1-4939-8808-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics