Skip to main content

Visualization of Xist Long Noncoding RNA with a Fluorescent CRISPR/Cas9 System

  • Protocol
  • First Online:
Epitranscriptomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1870))

Abstract

X-inactive specific transcript (Xist) is a long noncoding RNA that is essential for initiating and maintaining epigenetic silencing of one copy of the X chromosome in mammalian females. But the mechanism by which Xist localizes and spreads on the X chromosome and facilitates transcriptional silencing remains largely unknown. This limited understanding, at least in part, is due to the technical difficulties in the visualization and functional characterization of Xist. Development of a successful method for Xist tracking is a key to better understanding of the X chromosome silencing, as well as to gain insight into the regulatory role of other long noncoding RNAs. Here, we describe an alternative method for visualization of Xist lncRNA in cells using a CRISPR/Cas9-based approach. This strategy is relatively simple approach to track Xist at different stages of cell differentiation, providing mechanistic insights into the initiation, maintenance, and establishment of X inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  CAS  PubMed  Google Scholar 

  2. Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379(6561):131–137. https://doi.org/10.1038/379131a0

    Article  CAS  PubMed  Google Scholar 

  3. Bhatnagar S, Zhu X, Ou J, Lin L, Chamberlain L, Zhu LJ, Wajapeyee N, Green MR (2014) Genetic and pharmacological reactivation of the mammalian inactive X chromosome. Proc Natl Acad Sci U S A 111(35):12591–12598. https://doi.org/10.1073/pnas.1413620111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Minajigi A, Froberg J, Wei C, Sunwoo H, Kesner B, Colognori D, Lessing D, Payer B, Boukhali M, Haas W, Lee JT (2015) Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349(6245). https://doi.org/10.1126/science.aab2276

  5. Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM, Magnuson T, Heard E, Chang HY (2015) Systematic discovery of Xist RNA binding proteins. Cell 161(2):404–416. https://doi.org/10.1016/j.cell.2015.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Memili E, Hong YK, Kim DH, Ontiveros SD, Strauss WM (2001) Murine Xist RNA isoforms are different at their 3′ ends: a role for differential polyadenylation. Gene 266(1–2):131–137

    Article  CAS  PubMed  Google Scholar 

  7. Clemson CM, McNeil JA, Willard HF, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132(3):259–275

    Article  CAS  PubMed  Google Scholar 

  8. Ng K, Daigle N, Bancaud A, Ohhata T, Humphreys P, Walker R, Ellenberg J, Wutz A (2011) A system for imaging the regulatory noncoding Xist RNA in living mouse embryonic stem cells. Mol Biol Cell 22(14):2634–2645. https://doi.org/10.1091/mbc.E11-02-0146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165(2):488–496. https://doi.org/10.1016/j.cell.2016.02.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank Dr. Eugene Yeo for the deposition of plasmids sequences to Addgene for research distribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanchita Bhatnagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Waśko, U., Zheng, Z., Bhatnagar, S. (2019). Visualization of Xist Long Noncoding RNA with a Fluorescent CRISPR/Cas9 System. In: Wajapeyee, N., Gupta, R. (eds) Epitranscriptomics. Methods in Molecular Biology, vol 1870. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8808-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8808-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8807-5

  • Online ISBN: 978-1-4939-8808-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics