Skip to main content

Detection of MicroRNA-Mediated Target mRNA Cleavage and 3′-Uridylation in Human Cells by a SLA-RT-PCR Analysis

  • Protocol
  • First Online:
Epitranscriptomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1870))

Abstract

MicroRNA (miRNA) plays an important role in posttranscriptional regulation of gene expression by dominantly binding to the 3′-UTR regions of target mRNAs in the miRNA-induced silencing complex (miRISC), triggering off their sequential cleavage and 3′-uridylation, facilitating their degradation, repressing target gene expression, and leading to a reduced protein output. The miRNA-mediated target mRNA cleavage activity generates cleaved mRNA fragments with varied termini, which creates major technical challenges for the accurate and efficient detection and verification of cleavage sites on target mRNAs and the resulting mRNA fragments in transition. Here we described a sensitive stem-loop array reverse transcription polymerase chain reaction (SLA-RT-PCR) approach to detect and verify the miRNA-mediated target mRNA cleavage sites by determining precise sequences at the 3′- termini of cleaved mRNA fragments and their 3′-uridylation in human cells under physiological conditions. The SLA-RT-PCR methods have been demonstrated as a sensitive, cost-efficient, and high-throughput tool to systematically detect miRNA-targeted mRNA cleavage sites and fragments with 3′-uridylation in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros V, Chen X (2007) The regulation of genes and genomes by small RNAs. Development 134(9):1635–1641. https://doi.org/10.1242/dev.002006

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19(6):586–593. https://doi.org/10.1038/nsmb.2296

    Article  CAS  PubMed  Google Scholar 

  5. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114. https://doi.org/10.1038/nrg2290

    Article  CAS  PubMed  Google Scholar 

  6. Schwarz DS, Zamore PD (2002) Why do miRNAs live in the miRNP? Genes Dev 16(9):1025–1031. https://doi.org/10.1101/gad.992502

    Article  CAS  PubMed  Google Scholar 

  7. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14(8):475–488. https://doi.org/10.1038/nrm3611

    Article  CAS  PubMed  Google Scholar 

  8. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840. https://doi.org/10.1038/nature09267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Xu K, Lin J, Zandi R, Roth JA, Ji L (2016) MicroRNA-mediated target mRNA cleavage and 3′-uridylation in human cells. Sci Rep 6:30242. https://doi.org/10.1038/srep30242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304(5670):594–596. https://doi.org/10.1126/science.1097434

    Article  CAS  PubMed  Google Scholar 

  11. Bracken CP, Szubert JM, Mercer TR, Dinger ME, Thomson DW, Mattick JS, Michael MZ, Goodall GJ (2011) Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic Acids Res 39(13):5658–5668. https://doi.org/10.1093/nar/gkr110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Karginov FV, Cheloufi S, Chong MM, Stark A, Smith AD, Hannon GJ (2010) Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol Cell 38(6):781–788. https://doi.org/10.1016/j.molcel.2010.06.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38(6):789–802. https://doi.org/10.1016/j.molcel.2010.06.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26(8):941–946. https://doi.org/10.1038/nbt1417

    Article  CAS  PubMed  Google Scholar 

  15. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773. https://doi.org/10.1038/nature03315

    Article  CAS  PubMed  Google Scholar 

  16. Ambros V (2010) In the tradition of science: an interview with Victor Ambros. PLoS Genet 6(3):e1000853. https://doi.org/10.1371/journal.pgen.1000853

    Article  CAS  PubMed  Google Scholar 

  17. Berezikov E, Cuppen E, Plasterk RH (2006) Approaches to microRNA discovery. Nat Genet 38(Suppl):S2–S7. https://doi.org/10.1038/ng1794

    Article  CAS  PubMed  Google Scholar 

  18. Neely LA, Patel S, Garver J, Gallo M, Hackett M, McLaughlin S, Nadel M, Harris J, Gullans S, Rooke J (2006) A single-molecule method for the quantitation of microRNA gene expression. Nat Methods 3(1):41–46. https://doi.org/10.1038/nmeth825

    Article  CAS  PubMed  Google Scholar 

  19. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1(2):155–161. https://doi.org/10.1038/nmeth717

    Article  CAS  PubMed  Google Scholar 

  20. Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM, Polis M, Dewar RL, Planta A, Liu S, Metcalf JA, Mellors JW, Coffin JM (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41(10):4531–4536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179. https://doi.org/10.1093/nar/gni178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lin J, Xu K, Roth JA, Ji L (2016) Detection of siRNA-mediated target mRNA cleavage activities in human cells by a novel stem-loop array RT-PCR analysis. Biochem Biophys Rep 6:16–23. https://doi.org/10.1016/j.bbrep.2016.02.012

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lin J, Zandi R, Shao R, Gu J, Ye Y, Wang J, Zhao Y, Pertsemlidis A, Wistuba II, Wu X, Roth JA, Ji L (2017) A miR-SNP biomarker linked to an increased lung cancer survival by miRNA-mediated down-regulation of FZD4 expression and Wnt signaling. Sci Rep 7(1):9029. https://doi.org/10.1038/s41598-017-09604-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Brody JR, Kern SE (2004) Sodium boric acid: a Tris-free, cooler conductive medium for DNA electrophoresis. BioTechniques 36(2):214–216

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  26. Trippe R, Guschina E, Hossbach M, Urlaub H, Luhrmann R, Benecke BJ (2006) Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. RNA 12(8):1494–1504. https://doi.org/10.1261/rna.87706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health/National Cancer Institute through Specialized Program of Research Excellence (SPORE) Grant CA-070907, R01 Grants CA176568 and a Department of Defense Grant W81XWH-09-02-0139 (L.J.) and The University of Texas MD Anderson Cancer Center’s Cancer Center Support Grant CA-016672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lin, J., Ji, L. (2019). Detection of MicroRNA-Mediated Target mRNA Cleavage and 3′-Uridylation in Human Cells by a SLA-RT-PCR Analysis. In: Wajapeyee, N., Gupta, R. (eds) Epitranscriptomics. Methods in Molecular Biology, vol 1870. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8808-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8808-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8807-5

  • Online ISBN: 978-1-4939-8808-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics