Skip to main content

Improvement of Mouse Cloning from Any Type of Cell by Nuclear Injection

  • Protocol
  • First Online:
Microinjection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1874))

Abstract

Somatic cell nuclear transfer (SCNT) technology has become a useful tool for animal cloning, gene manipulation, and genomic reprograming research. The original SCNT was performed using cell fusion between the donor cell and oocyte. This method remains very popular, but we have recently developed an alternative method that relies on nuclear injection rather than cell fusion. The advantages of nuclear injection include a shortened experimental procedure and reduced contamination of donor cytoplasm in the oocyte. In particular, only this method allows us to perform SCNT using dead cells or naked nuclei such as those from cadavers or body wastes. This chapter describes a basic protocol for the production of cloned mice by the nuclear injection method using a piezo-actuated micromanipulator as well as our recent advances in SCNT using noninvasively collected donor cells such as urine-derived somatic cells. This technique will greatly help not only SCNT but also other forms of micromanipulation, including sperm microinjection into oocytes and embryonic stem cell injection into blastocysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  Google Scholar 

  2. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374

    Article  CAS  Google Scholar 

  3. Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T et al (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289:1188–1190

    Article  CAS  Google Scholar 

  4. Loi P, Ptak G, Barboni B, Fulka J Jr, Cappai P, Clinton M (2001) Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat Biotechnol 19:962–964

    Article  CAS  Google Scholar 

  5. Kimura Y, Yanagimachi R (1995) Intracytoplasmic sperm injection in the mouse. Biol Reprod 52:709–720

    Article  CAS  Google Scholar 

  6. Wakayama T, Yanagimachi R (1998) Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol 16:639–641

    Article  CAS  Google Scholar 

  7. Kawase Y, Iwata T, Watanabe M, Kamada N, Ueda O, Suzuki H (2001) Application of the piezo-micromanipulator for injection of embryonic stem cells into mouse blastocysts. Contemp Top Lab Anim Sci 40:31–34

    CAS  PubMed  Google Scholar 

  8. Wakayama S, Ohta H, Hikichi T, Mizutani E, Iwaki T, Kanagawa O et al (2008) Production of healthy cloned mice from bodies frozen at −20 degrees C for 16 years. Proc Natl Acad Sci U S A 105:17318–17322

    Article  CAS  Google Scholar 

  9. Thuan NV, Kishigami S, Wakayama T (2010) How to improve the success rate of mouse cloning technology. J Reprod Dev 56:20–30

    Article  Google Scholar 

  10. Kishigami S, Bui HT, Wakayama S, Tokunaga K, Van Thuan N, Hikichi T et al (2007) Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer. J Reprod Dev 53:165–170

    Article  Google Scholar 

  11. Kishigami S, Mizutani E, Ohta H, Hikichi T, Thuan NV, Wakayama S et al (2006) Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun 340:183–189

    Article  CAS  Google Scholar 

  12. Van Thuan N, Bui HT, Kim JH, Hikichi T, Wakayama S, Kishigami S et al (2009) The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction 138:309–317

    Article  Google Scholar 

  13. Ono T, Li C, Mizutani E, Terashita Y, Yamagata K, Wakayama T (2010) Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice. Biol Reprod 83:929–937

    Article  CAS  Google Scholar 

  14. Svensson K, Mattsson R, James TC, Wentzel P, Pilartz M, MacLaughlin J et al (1998) The paternal allele of the H19 gene is progressively silenced during early mouse development: the acetylation status of histones may be involved in the generation of variegated expression patterns. Development 125:61–69

    CAS  PubMed  Google Scholar 

  15. Kishigami S, Ohta H, Mizutani E, Wakayama S, Bui HT, Thuan NV et al (2006) Harmful or not: trichostatin A treatment of embryos generated by ICSI or ROSI. Cent Eur J Biol 1:376–385

    CAS  Google Scholar 

  16. Terashita Y, Wakayama S, Yamagata K, Li C, Sato E, Wakayama T (2012) Latrunculin a can improve the birth rate of cloned mice and simplify the nuclear transfer protocol by gently inhibiting actin polymerization. Biol Reprod 86:180

    Article  Google Scholar 

  17. Terashita Y, Yamagata K, Tokoro M, Itoi F, Wakayama S, Li C et al (2013) Latrunculin a treatment prevents abnormal chromosome segregation for successful development of cloned embryos. PLoS One 8:e78380

    Article  CAS  Google Scholar 

  18. Wakayama S, Kohda T, Obokata H, Tokoro M, Li C, Terashita Y et al (2013) Successful serial recloning in the mouse over multiple generations. Cell Stem Cell 12:293–297

    Article  CAS  Google Scholar 

  19. Wakayama T, Shinkai Y, Tamashiro KL, Niida H, Blanchard DC, Blanchard RJ et al (2000) Cloning of mice to six generations. Nature 407:318–319

    Article  CAS  Google Scholar 

  20. Wakayama T, Yanagimachi R (2001) Mouse cloning with nucleus donor cells of different age and type. Mol Reprod Dev 58:376–383

    Article  CAS  Google Scholar 

  21. Inoue K, Ogonuki N, Mochida K, Yamamoto Y, Takano K, Kohda T et al (2003) Effects of donor cell type and genotype on the efficiency of mouse somatic cell cloning. Biol Reprod 69:1394–1400

    Article  CAS  Google Scholar 

  22. Tanabe Y, Kuwayama H, Wakayama S, Nagatomo H, Ooga M, Kamimura S et al (2017) Production of cloned mice using oocytes derived from ICR outbred strain. Reproduction 154(6):859–866

    Article  CAS  Google Scholar 

  23. Kawai S, Takagi Y, Kaneko S, Kurosawa T (2011) Effect of three types of mixed anesthetic agents alternate to ketamine in mice. Exp Anim 60:481–487

    Article  CAS  Google Scholar 

  24. Chatot CL, Ziomek CA, Bavister BD, Lewis JL, Torres I (1989) An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil 86:679–688

    Article  CAS  Google Scholar 

  25. Kuretake S, Kimura Y, Hoshi K, Yanagimachi R (1996) Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol Reprod 55:789–795

    Article  CAS  Google Scholar 

  26. Kishigami S, Wakayama T (2007) Efficient strontium-induced activation of mouse oocytes in standard culture media by chelating calcium. J Reprod Dev 53:1207–1215

    Article  CAS  Google Scholar 

  27. Ogura A, Inoue K, Ogonuki N, Noguchi A, Takano K, Nagano R et al (2000) Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. Biol Reprod 62:1579–1584

    Article  CAS  Google Scholar 

  28. Wakayama T, Yanagimachi R (1999) Cloning of male mice from adult tail-tip cells. Nat Genet 22:127–128

    Article  CAS  Google Scholar 

  29. Wakayama T, Rodriguez I, Perry AC, Yanagimachi R, Mombaerts P (1999) Mice cloned from embryonic stem cells. Proc Natl Acad Sci U S A 96:14984–14989

    Article  CAS  Google Scholar 

  30. Kamimura S, Inoue K, Ogonuki N, Hirose M, Oikawa M, Yo M et al (2013) Mouse cloning using a drop of peripheral blood. Biol Reprod 89:24

    Article  Google Scholar 

  31. Mizutani E, Torikai K, Wakayama S, Nagatomo H, Ohinata Y, Kishigami S et al (2016) Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells. Sci Rep 6:23808

    Article  CAS  Google Scholar 

  32. Terashita Y, Li C, Yamagata K, Sato E, Wakayama T (2011) Effect of fluorescent mercury light irradiation on in vitro and in vivo development of mouse oocytes after parthenogenetic activation or sperm microinjection. J Reprod Dev 57(5):564–571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruhiko Wakayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wakayama, S., Kishigami, S., Wakayama, T. (2019). Improvement of Mouse Cloning from Any Type of Cell by Nuclear Injection. In: Liu, C., Du, Y. (eds) Microinjection. Methods in Molecular Biology, vol 1874. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8831-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8831-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8830-3

  • Online ISBN: 978-1-4939-8831-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics