Skip to main content

Microinjection and Oviduct Transfer Procedures for Rat Model Generation with CRISPR-Cas9 Technology

  • Protocol
  • First Online:
Microinjection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1874))

Abstract

Since the first knockout rat model was generated with zinc-finger nucleases (ZFNs) by Geurt’s group in 2009, the demand for making targeted rat models has increased tremendously. The advent of the clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9) system provides researchers with a more efficient method for producing modified animals, which has since then been developed and applied in rat. Since we established a rat model production system at our facility in 2014, we have consistently generated rat models. Due to differences in physiology and embryology between mouse and rat, species-specific protocols for superovulation conditions, microinjection, and embryo transfer (among others) are required. There are over 100 rat strains, and Sprague Dawley is one of the commonly used outbred strains in biomedical research. In this chapter, we describe in detail a range of topics including donor and recipient preparation, microinjection setup, CRISPR reagent preparation, and oviduct transfer procedures for making rat models in the Sprague Dawley background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindsey JR (1979) Historical foundations in the laboratory rat. The laboratory rat. Academic Press, New York, NY

    Google Scholar 

  2. Iannaccone PM, Jacob HJ (2009) Rats! Dis Model Mech 2(5–6):206–210. https://doi.org/10.1242/dmm.002733

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bader M, Bohnemeier H, Zollmann FS, Lockley-Jones OE, Ganten D (2000) Transgenic animals in cardiovascular disease research. Exp Physiol 85(6):713–731

    Article  CAS  Google Scholar 

  4. Hamilton SM, Green JR, Veeraragavan S, Yuva L, McCoy A, Wu Y, Warren J, Little L, Ji D, Cui X, Weinstein E, Paylor R (2014) Fmr1 and Nlgn3 knockout rats: novel tools for investigating autism spectrum disorders. Behav Neurosci 128(2):103–109. https://doi.org/10.1037/a0035988

    Article  CAS  PubMed  Google Scholar 

  5. Scarda A, Franzin C, Milan G, Sanna M, Dal Pra C, Pagano C, Boldrin L, Piccoli M, Trevellin E, Granzotto M, Gamba P, Federspil G, De Coppi P, Vettor R (2010) Increased adipogenic conversion of muscle satellite cells in obese Zucker rats. Int J Obes 34(8):1319–1327. https://doi.org/10.1038/ijo.2010.47

    Article  CAS  Google Scholar 

  6. Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH, Hargreaves IP, Neergheen V, Aiken CE, Ozanne SE (2016) Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats. Dis Model Mech 9(10):1221–1229. https://doi.org/10.1242/dmm.026591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Naidu JR, Ismail R, Sasidharan S (2014) Acute oral toxicity and brine shrimp lethality of methanol extract of Mentha Spicata L (Lamiaceae). Trop J Pharm Res 13(1):101–107. https://doi.org/10.4314/tjpr.v13i1.15

    Article  Google Scholar 

  8. Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135(7):1287–1298. https://doi.org/10.1016/j.cell.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  9. Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135(7):1299–1310. https://doi.org/10.1016/j.cell.2008.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, First NL, Maeda N, Smithies O (1989) Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci U S A 86(22):8927–8931

    Article  CAS  Google Scholar 

  11. Thompson S, Clarke AR, Pow AM, Hooper ML, Melton DW (1989) Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56(2):313–321

    Article  CAS  Google Scholar 

  12. Zijlstra M, Li E, Sajjadi F, Subramani S, Jaenisch R (1989) Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342(6248):435–438. https://doi.org/10.1038/342435a0

    Article  CAS  PubMed  Google Scholar 

  13. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433. https://doi.org/10.1126/science.1172447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31(8):681–683. https://doi.org/10.1038/nbt.2661

    Article  CAS  PubMed  Google Scholar 

  15. Gudbergsdottir S, Deng L, Chen Z, Jensen JV, Jensen LR, She Q, Garrett RA (2011) Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers. Mol Microbiol 79(1):35–49. https://doi.org/10.1111/j.1365-2958.2010.07452.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manica A, Zebec Z, Teichmann D, Schleper C (2011) In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon. Mol Microbiol 80(2):481–491. https://doi.org/10.1111/j.1365-2958.2011.07586.x

    Article  CAS  PubMed  Google Scholar 

  17. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  Google Scholar 

  18. Chapman KM, Medrano GA, Jaichander P, Chaudhary J, Waits AE, Nobrega MA, Hotaling JM, Ober C, Hamra FK (2015) Targeted germline modifications in rats using CRISPR/Cas9 and spermatogonial stem cells. Cell Rep 10(11):1828–1835. https://doi.org/10.1016/j.celrep.2015.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Filipiak WE, Saunders TL (2006) Advances in transgenic rat production. Transgenic Res 15(6):673–686. https://doi.org/10.1007/s11248-006-9002-x

    Article  CAS  PubMed  Google Scholar 

  20. Hu LL, Shen XH, Zheng Z, Wang ZD, Liu ZH, Jin LH, Lei L (2012) Cytochalasin B treatment of mouse oocytes during intracytoplasmic sperm injection (ICSI) increases embryo survival without impairment of development. Zygote 20(4):361–369. https://doi.org/10.1017/S0967199411000438

    Article  CAS  Google Scholar 

  21. Zhou Y, Galat V, Garton R, Taborn G, Niwa K, Iannaccone P (2003) Two-phase chemically defined culture system for preimplantation rat embryos. Genesis 36(3):129–133. https://doi.org/10.1002/gene.10203

    Article  PubMed  Google Scholar 

  22. Greene TM, Redding CL, Birkett MA (2014) Effects of rat visual, olfactory, or combined stimuli during cohousing on stress-related physiology and behavior in C57BL/6NCrl mice. J Am Assoc Lab Anim Sci 53(6):647–652

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Technology Development Group, Genotyping Analysis Lab, Colony Resource Group, Animal Resource Group, and Transgenic Technology Co-Op group at Genentech for their collaboration and support for producing rat models. We would also like to thank Dr. Juan M. Reyes for his suggestions and assistance with editing this chapter, and Natasha O’Neil for photography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Y. Rairdan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alcantar, T.M., Rairdan, X.Y. (2019). Microinjection and Oviduct Transfer Procedures for Rat Model Generation with CRISPR-Cas9 Technology. In: Liu, C., Du, Y. (eds) Microinjection. Methods in Molecular Biology, vol 1874. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8831-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8831-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8830-3

  • Online ISBN: 978-1-4939-8831-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics