Skip to main content

Computational Methods for Modeling Metalloproteins

  • Protocol
  • First Online:
Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1876))

Abstract

Metalloproteins are challenging objects if we want to investigate their chemical reactivity with theoretical approaches such as density functional theory (DFT). The complexity of these biomolecules often requires us to find a compromise between accuracy and feasibility, one that is tailored to the questions we set out to answer. In this chapter, we discuss computational approaches to studying chemical reactions in metalloproteins and how to utilize the information hidden in homologous proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Duin ACT, Dasgupta S, Lorant F et al (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409

    Article  Google Scholar 

  2. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  3. Sham LJ, Kohn W (1964) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Google Scholar 

  4. Harvey JN (2004) DFT computation of relative spin-state energetics of transition metal compounds. Struct Bond 112:151–183

    Article  CAS  Google Scholar 

  5. Siegbahn PEM, Himo F (2011) The quantum chemical cluster approach for modeling enzyme reactions. Wiley Interdiscip Rev Comput Mol Sci 1:323–336

    Article  CAS  Google Scholar 

  6. O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33

    Article  Google Scholar 

  7. Sondergaard CR, Olsson MHM, Rostkowski M et al (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theory Comput 7:2284–2295

    Article  CAS  Google Scholar 

  8. Olsson MHM, Sondergaard CR, Rostowski M et al (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537

    Article  CAS  Google Scholar 

  9. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  10. Jacob CR, Neugebauer J (2014) Subsystem density-functional theory. WIREs Comput Mol Sci 4:325–362

    Article  CAS  Google Scholar 

  11. Slater JC (1951) A simplification of the Hartree-Fock method. Phys Rev 81:385–390

    Article  CAS  Google Scholar 

  12. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 81:1200–1211

    Article  Google Scholar 

  13. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  14. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  15. Tao J, Perdew JP, Staroverov VN et al (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401

    Article  Google Scholar 

  16. Zhao Y, Truhlar DG (2006) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent nteractions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Article  Google Scholar 

  17. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  18. Perdew JP, Zupan S, Blaha P (1999) Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation. Phys Rev Lett 82:2544–2547

    Article  CAS  Google Scholar 

  19. Perdew JP, Tao J, Staroverov VN et al (2004) Meta-generalized gradient approximation: explanation of a realistic nonempirical density functional. J Chem Phys 120:6898–6911

    Article  CAS  Google Scholar 

  20. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985

    Article  CAS  Google Scholar 

  21. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473

    Article  CAS  Google Scholar 

  22. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion contribution. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  23. Grimme S, Antony J, Ehrlich S et al (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  24. Valiev M, Bylaska EJ, Govind N et al (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477

    Article  CAS  Google Scholar 

  25. te Velde F, Bickelhaupt FM, Baerends EJ et al (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  26. Hoffmann R (1963) An extended Hückel theory. I. Hydrocarbons. J Chem Phys 39:1397–1412

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision E.01. Gaussian, Wallingford CT

    Google Scholar 

  28. Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235

    Article  CAS  Google Scholar 

  29. Mills F, Jónsson H, Schenter GK (1995) Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 324:305–337

    Article  CAS  Google Scholar 

  30. Peng C, Schlegel JB (1993) Combining synchronous transit and quasi-Newton methods for finding transition states. Israel J Chem 33:449–454

    Article  CAS  Google Scholar 

  31. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  32. Stiebritz MT, Hiller CJ, Sickerman NS et al (2018) Ambient conversion of CO2 to hydrocarbons by biogenic and synthetic [Fe4S4] clusters. Nat Catal in press

    Google Scholar 

  33. Noodleman J (1981) Valence bond description of antiferromagnetic coupling in transition metal dimers. J Chem Phys 74:5737–5743

    Article  CAS  Google Scholar 

  34. Noodleman J, Post D, Baerends E (1982) Symmetry breaking and ionization from symmetry equivalent inner shells, and lone pairs in Xα theory. Chem Phys 64:159–166

    Article  CAS  Google Scholar 

  35. Noodleman J, Peng CY, Case DA et al (1995) Orbital interactions, electron delocalization and spin coupling in iron-sulfur clusters. Coord Chem 144:199–244

    Article  CAS  Google Scholar 

  36. Lovell T, Li J, Liu T et al (2001) FeMo cofactor of nitrogenase: a density functional study of states MN, MOX, MR, and MI. J Am Chem Soc 123:12392–12410

    Article  CAS  Google Scholar 

  37. Rebelein JG, Stiebritz MT, Lee CC et al (2017) Activation and reduction of carbon dioxide by nitrogenase iron proteins. Nat Chem Biol 13:147–149

    Article  CAS  Google Scholar 

  38. Strop P, Takahara PM, Chiu H et al (2001) Crystal structure of the all-ferrous [4Fe-4S]0 form of the nitrogenase iron protein from Azotobacter vinelandii. Biochemistry 40:651–656

    Article  CAS  Google Scholar 

  39. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5836

    Article  Google Scholar 

  40. Weigend F, Ahlrichs R (2005) Balanced basis sets of split alence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  41. Schäfer A, Horn H, Ahrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  Google Scholar 

  42. Eichkorn K, Weigend F, Treutler O et al (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate coulomb potentials. Theor Chem Accounts 97:119–124

    Article  CAS  Google Scholar 

  43. Weigend F (2006) Accurate coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057–1065

    Article  CAS  Google Scholar 

  44. Martί-Renom MA, Stuart AC, Fiser A et al (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  Google Scholar 

  45. Lesk AM, Chothia C (1980) How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J Mol Biol 136:225–270

    Article  CAS  Google Scholar 

  46. Arnold K, Bordoli L, Kopp J et al (2006) The SWISS-MODEL workspace: a web based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  47. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30:S162–S173

    Article  Google Scholar 

  48. Kiefer F, Arnold K, Künzli M et al (2009) The Swiss-model repository and associated resources. Nucleic Acids Res 37:D387–D392

    Article  CAS  Google Scholar 

  49. Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    Article  CAS  Google Scholar 

  50. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  51. Webb B, Sali A (2014) Comparative protein structure modeling using modeller. Curr Protoc Bioinformatics 47:5.6.1–5.6.32

    Article  Google Scholar 

  52. Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71:261–277

    Article  CAS  Google Scholar 

  53. Li L, Li C, Sarkar S et al (2012) DelPhi: a comprehensive suite for DelPhi software and associated resources. BMC Biophys 5:9

    Article  Google Scholar 

  54. Baker NA, Sept D, Joseph S et al (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041

    Article  CAS  Google Scholar 

  55. Finkelmann AR, Stiebritz MT, Reiher M (2013) Electric-field effects on the [FeFe]-hydrogenase active site. Chem Commun 49:8099–8101

    Article  CAS  Google Scholar 

  56. Dolinsky TJ, Nielsen JE, McCammon JA et al (2004) PDB2PQR: an automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667

    Article  CAS  Google Scholar 

  57. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98:1978–1988

    Article  CAS  Google Scholar 

  58. Warshel A, Levitt M (1976) Theoretical studies of enzymatic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249

    Article  CAS  Google Scholar 

  59. Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11:700–733

    Article  CAS  Google Scholar 

  60. Gao J (1996) Hybrid quantum and molecular mechanical simulations: an alternative avenue to solvent ffects in organic chemistry. Acc Chem Res 29:298–305

    Article  CAS  Google Scholar 

  61. Svensson M, Humbel S, Froese RDJ et al (1996) ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J Phys Chem 100:19357–19363

    Article  CAS  Google Scholar 

  62. Metz S, Kästner J, Sokol AA et al (2014) ChemShell – a molecular software package for QM/MM simulations. WIREs Comput Mol Sci 4:101–110

    Article  CAS  Google Scholar 

  63. Ryde U (1996) The coordination of the catalytic zinc ion in alcohol dehydrogenase studied by combined quantum chemical and molecular mechanical calculations. J Comput Aided Mol Des 10:153–164

    Article  CAS  Google Scholar 

  64. Ryde U, Olsson MH (2001) Structure, strain, and reorganization energy of blue copper models in the protein. Int J Quant Chem 81:335–347

    Article  CAS  Google Scholar 

  65. Lin H, Truhlar DG (2007) QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Accounts 117:185–199

    Article  CAS  Google Scholar 

  66. Senn HM, Thiel W (2007) QM/MM studies of enzymes. Curr Opin Chem Biol 11:182–187

    Article  CAS  Google Scholar 

  67. Ryde U (2003) Combined quantum and molecular mechanics calculations on metalloproteins. Curr Opin Chem Biol 7:136–142

    Article  CAS  Google Scholar 

  68. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl 48:1198–1229

    Article  CAS  Google Scholar 

  69. Case DA, Cerutti DS, Cheatham TE III et al (2017) Amber. University of California, San Francisco

    Google Scholar 

  70. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci 3:198–210

    Article  CAS  Google Scholar 

  71. Bayly CI, Cieplak P, Cornell WD et al (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP method. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  72. Hoops SC, Anderson KW, Merz KM (1991) Force field design for metalloproteins. J Am Chem Soc 113:8262–8270

    Article  CAS  Google Scholar 

  73. Ryde U (1995) Molecular dynamics simulations of alcohol dehydrogenase with a four- or five-coordinate catalytic zinc ion. Proteins 21:40–56

    Article  CAS  Google Scholar 

  74. Seminario JM (1996) Calculation of intramolecular force fields from second-derivative tensors. Int J Quantum Chem 60:1271–1277

    Article  Google Scholar 

  75. Burger SK, Lacasse M, Verstraelen T et al (2012) Automated parametrization of AMBER force field terms from vibrational analysis with a focus on functionalizing dinuclear zinc(II) scaffolds. J Chem Theory Comput 8:554–562

    Article  CAS  Google Scholar 

  76. Nilsson K, Lecerof D, Sigfridsson E et al (2003) An automatic method to generate force-field parameters for hetero-compounds. Acta Crystallogr Sect D 59:274–289

    Article  Google Scholar 

  77. Vanduyfhuys L, Vandenbrande S, Verstraelen T et al (2015) QuickFF: a program for a quick and easy derivation of force fields for metal-organic frameworks from ab initio input. J Comp Chem 36:1015–1027

    Article  CAS  Google Scholar 

  78. Zheng S, Tang Q, He J et al (2016) VFFDT: a new software for preparing AMBER force field parameters for metal-containing molecular systems. J Chem Inf Model 56:811–818

    Article  CAS  Google Scholar 

  79. Li P, Merz KM (2016) MCBP.py: a python based metal center parameter builder. J Chem Inf Model 56:599–604

    Article  CAS  Google Scholar 

  80. Stiebritz MT (2015) MetREx: a protein design approach for the exploration of sequence-reactivity relationships in metalloenzymes. J Comput Chem 36:553–563

    Article  CAS  Google Scholar 

  81. Stiebritz MT, Wengrzik S, Klein DL et al (2010) Computational design of a chain-specific tetracycline repressor heterodimer. J Mol Biol 403:371–385

    Article  CAS  Google Scholar 

  82. Stiebritz MT, Muller YA (2006) MUMBO: a protein-design approach to crystallographic model building and refinement. Acta Crystallogr Sect D 62:648–658

    Article  Google Scholar 

Download references

Acknowledgments

The authors are supported by the National Science Foundation CAREER award CHE-1651398 (to Y.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin T. Stiebritz or Yilin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stiebritz, M.T., Hu, Y. (2019). Computational Methods for Modeling Metalloproteins. In: Hu, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1876. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8864-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8864-8_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8863-1

  • Online ISBN: 978-1-4939-8864-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics