Skip to main content

Molybdenum-Containing Enzymes

  • Protocol
  • First Online:
Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1876))

Abstract

An overview of modern methods used in the preparation and characterization of molybdenum-containing enzymes is presented, with an emphasis on those methods that have been developed over the past decade to address specific difficulties frequently encountered in studies of these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brewer PG (1975) Minor elements in seawater. In: Riley JP (ed) Chemical oceanography, vol 1. Academic Press, New York, pp 415–496

    Google Scholar 

  2. Collier RW (1985) Molybdenum in the northeast Pacific Ocean. Limnol Oceanogr 30:1351–1354

    Article  CAS  Google Scholar 

  3. Weiss MC, Sousa FL, Mrnjavac N et al (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116

    Article  CAS  Google Scholar 

  4. Hille R, Hall J, Basu P (2014) The mononuclear molybdenum enzymes. Chem Rev 114:3963–4038

    Article  CAS  Google Scholar 

  5. Hille R (1996) The mononuclear enzymes. Chem Rev 96:2757–2816

    Article  CAS  Google Scholar 

  6. Dixon M, Thurlow S (1924) Studies on xanthine oxidase. I. Preparation and properties of the active material. Biochem J 18:971–975

    Article  CAS  Google Scholar 

  7. Massey V, Edmondson DE (1970) Mechanism of inactivation of xanthine oxidase by cyanide. J Biol Chem 245:6595–6598

    CAS  PubMed  Google Scholar 

  8. Wahl RC, Rajagopalan KV (1982) Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases. J Biol Chem 257:1354–1359

    CAS  PubMed  Google Scholar 

  9. Bergel F, Bray RC (1956) Stabilization of xanthine oxidase activity by salicylate. Nature 178:88–89

    Article  CAS  Google Scholar 

  10. Friedebold J, Bowien B (1993) Physiological and biochemical characterization of the soluble formate dehydrogenase, a molybdoenzyme from Alcaligenes eutrophus. J Bacteriol 175:4719–4728

    Article  CAS  Google Scholar 

  11. Resch M, Dobbek H, Meyer O (2005) Structural and functional reconstitution in situ of the [CuSMoO2] active site of carbon monoxide dehydrogenase from the carbon monoxide-oxidizing eubacterium Oligotropha carboxidovorans. J Biol Inorg Chem 5:518–528

    Article  Google Scholar 

  12. Mee JF (2004) The role of micronutrients in bovine periparturient problems. Cattle Pract 12:95–108

    Google Scholar 

  13. Li H-K, Temple C, Rajagopalan KV et al (2000) The 1.3 Å crystal structure of Rhodobacter sphaeroides dimethyl sulfoxie reductase reveals two distinct molybdenum coordination environments. J Am Chem Soc 122:7673–7680

    Article  CAS  Google Scholar 

  14. Bray RC, Adams B, Smith AT et al (2000) Reversible dissociation of thiolate ligands from molybdenum in an enzyme of the dimethyl sulfoxide reductase family. Biochemistry 39:11258–11269

    Article  CAS  Google Scholar 

  15. Mtei RP, Lyashenko G, Stein B et al (2011) Spectroscopic and electronic structure studies of a dimethyl sulfoxide reductase catalytic intermediate: implications for electron- and atom-transfer reactivity. J Am Chem Soc 133:9762–9774

    Article  CAS  Google Scholar 

  16. Mendel RR (2013) The molybdenum cofactor. J Biol Chem 288:13165–13172

    Article  CAS  Google Scholar 

  17. Leimkühler S, Iobbi-Nivol C (2013) Molybdenum enzymes, their maturation and molybdenum cofactor biosyntehsis in Escherichia coli. Biochim Biophys Acta 1827:1086–1101

    Article  Google Scholar 

  18. Iobbi-Nivol C, Leim kühler S (2013) Bacterial molybdeoenzymes: old enzymes for new purposes. FEMS Microbiol Rev 40:1–18

    Google Scholar 

  19. Warelow TP, Oke M, Schoepp-Cothenet B et al (2013) The respiratory arsenite oxidase: structure and the role of residues surrounding the Rieske cluster. PLoS One 8:e72535

    Article  CAS  Google Scholar 

  20. Temple CA, Graf TN, Rajagopalan KV (2000) Optimization of expression of human sulfite oxidase and its molybdenum domain. Arch Biochem Biophys 383:281–287

    Article  CAS  Google Scholar 

  21. Palmer T, Santini C-L, Lobbi-Nivol C et al (1996) Involvement of the narJ and mob gene products in distinct steps in the biosynthesis of the molybdoenzyme nitrate reductase in Escherichia coli. Mol Microbiol 20:875–884

    Article  CAS  Google Scholar 

  22. Hartmann T, Leimkühler S (2013) The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate. FEBS J 280:6083–6096

    Article  CAS  Google Scholar 

  23. Sabaty M, Grosse S, Adryanczyk G et al (2013) Detrimental effect of the 6 His C-terminal tag on YedY enzymatic activity and influence of the TAT signal sequence on YedY synthesis. BMC Biochem 14:28

    Article  CAS  Google Scholar 

  24. Arnau J, Lauritzen C, Petersen GE et al (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48:1–13

    Article  CAS  Google Scholar 

  25. Johnson JL, Rajagopalan KV (1984) The pterin component of the molybdenum cofactor – structural characterization of 2 fluorescent derivative. J Biol Chem 259:5414–5422

    CAS  PubMed  Google Scholar 

  26. Schumann S, Terao M, Garattini E et al (2009) Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1. PLoS One 4:e5348

    Article  Google Scholar 

  27. Hille R (2010) EPR studies of xanthine oxidoreductase and other molybdenum-containing hydroxylases. In: Hanson G, Berliner L (eds) Metals in biology: applications of high-resolution EPR to metalloenzymes, Biological magnetic resonance, vol 29. Springer, Berlin, pp 91–120

    Chapter  Google Scholar 

  28. Kappler U, Schwarz G (2017) The sulfite oxidase family of molybdenum enzymes. In: Hille R, Schulzke C, Kirk ML (eds) Molybdenum and tungsten enzymes: biochemistry. RSC Press, London, pp 240–273

    Google Scholar 

  29. Beinert H, Orme-Johnson WH, Palmer G (1978) Special techniques for the preparation of samples for low-temperature EPR spectroscopy. Methods Enzymol 54:111–132

    Article  CAS  Google Scholar 

  30. Foust GP, Burleigh BD, Mayhew SG et al (1969) An anaerobic titration assembly for spectrophotometric use. Anal Biochem 27:530–535

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory is supported by a grant from the Department of Energy (DE-SC0010666 to RH).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Niks, D., Hille, R. (2019). Molybdenum-Containing Enzymes. In: Hu, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1876. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8864-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8864-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8863-1

  • Online ISBN: 978-1-4939-8864-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics