Skip to main content

Hydrogenases

  • Protocol
  • First Online:
Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1876))

Abstract

Hydrogenases catalyze the simple yet important interconversion between H2 and protons and electrons. Found throughout prokaryotes, lower eukaryotes, and archaea, hydrogenases are used for a variety of redox and signaling purposes and are found in many different forms. This diverse group of metalloenzymes is divided into [NiFe], [FeFe], and [Fe] variants, based on the transition metal contents of their active sites. A wide array of biochemical and spectroscopic methods has been used to elucidate hydrogenases, and this along with a general description of the main enzyme types and catalytic mechanisms is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lubitz W, Ogata H, Rüdiger O et al (2014) Hydrogenases. Chem Rev 114:4081–4148

    Article  CAS  PubMed  Google Scholar 

  2. Lubitz W, Tumas W (2007) Hydrogen: an Overview. Chem Rev 107:3900–3903

    Article  CAS  PubMed  Google Scholar 

  3. Krasna AI (1979) Hydrogenase: properties and applications. Enzym Microb Technol 1:165–172

    Article  CAS  Google Scholar 

  4. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    Article  CAS  PubMed  Google Scholar 

  5. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  CAS  PubMed  Google Scholar 

  6. Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96:2983–3011

    Article  CAS  PubMed  Google Scholar 

  7. Hoffman BM, Lukoyanov D, Yang ZY et al (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eberly JO, Ely RL (2008) Thermotolerant hydrogenases: biological diversity, properties, and biotechnological applications. Crit Rev Microbiol 34:117–130

    Article  CAS  PubMed  Google Scholar 

  9. Ghirardi ML, King P, Kosourov S et al (2005) Development of algal systems for hydrogen photoproduction: addressing the hydrogenase oxygen-sensitivity problem. Wiley-VCH Verlag GmbH & Co, KGaA, pp 213–227

    Google Scholar 

  10. Armstrong FA, Belsey NA, Cracknell JA et al (2009) Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology. Chem Soc Rev 38:36–51

    Article  CAS  PubMed  Google Scholar 

  11. Artero V, Fontecave M (2005) Some general principles for designing electrocatalysts with hydrogenase activity. Coord Chem Rev 249:1518–1535

    Article  CAS  Google Scholar 

  12. Lubitz W, Reijerse EJ, Messinger J (2008) Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases. Energy Environ Sci 1:15–31

    Article  CAS  Google Scholar 

  13. Melis A (2005) Bioengineering of green algae to enhance photosynthesis and hydrogen production. Wiley-VCH Verlag GmbH & Co, KGaA, pp 229–240

    Google Scholar 

  14. Lubitz W, Reijerse E, van Gastel M (2007) [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365

    Article  CAS  PubMed  Google Scholar 

  15. Fontecilla-Camps JC, Volbeda A, Cavazza C et al (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107:4273–4303

    Article  CAS  PubMed  Google Scholar 

  16. Gu Z, Dong J, Allan CB et al (1996) Structure of the Ni sites in hydrogenases by x-ray absorption spectroscopy. Species variation and the effects of redox poise. J Am Chem Soc 118:11155–11165

    Article  CAS  Google Scholar 

  17. Davidson G, Choudhury SB, Gu Z et al (2000) Structural examination of the nickel site in Chromatium vinosum hydrogenase: redox state oscillations and structural changes accompanying reductive activation and CO binding. Biochemistry 39:7468–7479

    Article  CAS  PubMed  Google Scholar 

  18. Foerster S, Stein M, Brecht M et al (2003) Single crystal EPR studies of the reduced active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Am Chem Soc 125:83–93

    Article  CAS  PubMed  Google Scholar 

  19. Moura JJ, Moura I, Huynh BH et al (1982) Unambiguous identification of the nickel EPR signal in nickel-61 enriched Desulfovibrio gigas hydrogenase. Biochem Biophys Res Commun 108:1388–1393

    Article  CAS  PubMed  Google Scholar 

  20. Happe RP, Roseboom W, Egert G et al (2000) Unusual FTIR and EPR properties of the H2-activating site of the cytoplasmic NAD-reducing hydrogenase from Ralstonia eutropha. FEBS Lett 466:259–263

    Article  CAS  PubMed  Google Scholar 

  21. De Lacey AL, Gutierrez-Sanchez C, Fernandez VM et al (2008) FTIR spectroelectro-chemical characterization of the Ni-Fe-Se hydrogenase from Desulfovibrio vulgaris Hildenborough. J Biol Inorg Chem 13:1315–1320

    Article  PubMed  CAS  Google Scholar 

  22. Pandelia M-E, Ogata H, Lubitz W (2010) Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site. ChemPhysChem 11:1127–1140

    Article  CAS  PubMed  Google Scholar 

  23. Happe R, Rosenboom W, Pierik AJ et al (1997) Biological activation of hydrogen. Nature 385:126

    Article  CAS  PubMed  Google Scholar 

  24. Pierik AJ, Hulstein M, Hagen WR et al (1998) A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. Eur J Biochem 258:572–578

    Article  CAS  PubMed  Google Scholar 

  25. Volbeda A, Garcin E, Piras C et al (1996) Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J Am Chem Soc 118:12989–12996

    Article  CAS  Google Scholar 

  26. Ogata H, Mizoguchi Y, Mizuno N et al (2002) Structural studies of the carbon monoxide complex of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F: suggestion for the initial activation site for dihydrogen. J Am Chem Soc 124:11628–11635

    Article  CAS  PubMed  Google Scholar 

  27. Siebert E, Horch M, Rippers Y et al (2013) Resonance Raman spectroscopy as a tool to monitor the active site of hydrogenases. Angew Chem Int Ed 52:5162–5165

    Article  CAS  Google Scholar 

  28. Kuchenreuther JM, Guo Y, Wang H et al (2013) Nuclear resonance vibrational spectroscopy and electron paramagnetic resonance spectroscopy of 57Fe-enriched [FeFe] hydrogenase indicate stepwise assembly of the H-cluster. Biochemistry 52:818–826

    Article  CAS  PubMed  Google Scholar 

  29. Guo Y, Wang H, Xiao Y et al (2008) Characterization of the Fe site in iron-sulfur cluster-free hydrogenase (Hmd) and of a model compound via nuclear resonance vibrational spectroscopy (NRVS). Inorg Chem 47:3969–3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kamali S, Wang H, Mitra D et al (2013) Observation of the Fe–CN and Fe–CO vibrations in the active site of [NiFe] hydrogenase by nuclear resonance vibrational spectroscopy. Angew Chem Int Ed 52:724–728

    Article  CAS  Google Scholar 

  31. Pershad HR, Duff JLC, Heering HA et al (1999) Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Biochemistry 38:8992–8999

    Article  CAS  PubMed  Google Scholar 

  32. Armstrong FA, Albracht SPJ (2005) [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. Philos Trans A Math Phys Eng Sci 363:937–954

    Article  CAS  PubMed  Google Scholar 

  33. Vincent KA, Parkin A, Armstrong FA (2007) Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem Rev 107:4366–4413

    Article  CAS  PubMed  Google Scholar 

  34. Vincent KA, Armstrong FA (2005) Investigating metalloenzyme reactions using electrochemical sweeps and steps: fine control and measurements with reactants ranging from ions to gases. Inorg Chem 44:798–809

    Article  CAS  PubMed  Google Scholar 

  35. Vincent KA, Cracknell JA, Parkin A et al (2005) Hydrogen cycling by enzymes: electrocatalysis and implications for future energy technology. Dalton Trans:3397–3403

    Google Scholar 

  36. Millo D, Hildebrandt P, Pandelia ME et al (2011) SEIRA spectroscopy of the electrochemical activation of an immobilized [NiFe] hydrogenase under turnover and non-turnover conditions. Angew Chem Int Ed 50:2632–2634

    Article  CAS  Google Scholar 

  37. Gutierrez-Sanz O, Marques M, Pereira IAC et al (2013) Orientation and function of a membrane-bound enzyme monitored by electrochemical surface-enhanced infrared absorption spectroscopy. J Phys Chem Lett 4:2794–2798

    Article  CAS  Google Scholar 

  38. Millo D, Pandelia ME, Utesch T et al (2009) Spectroelectrochemical study of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F in solution and immobilized on biocompatible gold surfaces. J Phys Chem B 113:15344–15351

    Article  CAS  PubMed  Google Scholar 

  39. Gutierrez-Sanchez C, Olea D, Marques M et al (2011) Oriented immobilization of a membrane-bound hydrogenase onto an electrode for direct electron transfer. Langmuir 27:6449–6457

    Article  CAS  PubMed  Google Scholar 

  40. Siegbahn PEM, Tye JW, Hall MB (2007) Computational studies of [NiFe] and [FeFe] hydrogenases. Chem Rev 107:4414–4435

    Article  CAS  PubMed  Google Scholar 

  41. Schultz KM, Chen D, Hu X (2013) [Fe]-Hydrogenase and models that contain iron-acyl ligation. Chem Asian J 8:1068–1075

    Article  CAS  PubMed  Google Scholar 

  42. Wang N, Wang M, Chen L et al (2013) Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Dalton Trans 42:12059–12071

    Article  CAS  PubMed  Google Scholar 

  43. Evans DJ, Pickett CJ (2003) Chemistry and the hydrogenases. Chem Soc Rev 32:268–275

    Article  PubMed  CAS  Google Scholar 

  44. Tard C, Pickett CJ (2009) Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem Rev 109:2245–2274

    Article  CAS  PubMed  Google Scholar 

  45. Esselborn J, Lambertz C, Adamska-Venkates A et al (2013) Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nat Chem Biol 9:607–609_

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schaefer C, Bommer M, Hennig SE et al (2016) Structure of an actinobacterial-type [NiFe]-hydrogenase reveals insight into O2-tolerant H2 oxidation. Structure 24:285–292

    Article  CAS  Google Scholar 

  47. Schäfer C, Friedrich B, Lenz O (2013) Novel, oxygen-insensitive group 5 [NiFe]-hydrogenase in Ralstonia eutropha. Appl Environ Microbiol 79:5137–5145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gross R, Pisa R, Saenger M et al (2004) Characterization of the menaquinone reduction site in the diheme cytochrome b membrane anchor of Wolinella succinogenes NiFe-hydrogenase. J Biol Chem 279:274–281

    Article  CAS  PubMed  Google Scholar 

  49. Yahata N, Saitoh T, Takayama Y et al (2006) Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Biochemistry 45:1653–1662

    Article  CAS  PubMed  Google Scholar 

  50. Sezer M, Frielingsdorf S, Millo D et al (2011) Role of the HoxZ subunit in the electron transfer pathway of the membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha immobilized on electrodes. J Phys Chem B 115:10368–10374

    Article  CAS  PubMed  Google Scholar 

  51. Garcin E, Vernede X, Hatchikian EC et al (1999) The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 7:557–566

    Article  CAS  PubMed  Google Scholar 

  52. Marques MC, Coelho R, Pereira IAC et al (2013) Redox state-dependent changes in the crystal structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough. Int J Hydrog Energy 38:8664–8682

    Article  CAS  Google Scholar 

  53. Higuchi Y, Yagi T, Yasuoka N (1997) Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution x-ray structure analysis. Structure 5:1671–1680

    Article  CAS  PubMed  Google Scholar 

  54. Marques MC, Coelho R, De Lacey AL et al (2010) The three-dimensional structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough: a hydrogenase without a bridging ligand in the active site in its oxidized, "as-isolated" state. J Mol Biol 396:893–907

    Article  CAS  PubMed  Google Scholar 

  55. Volbeda A, Amara P, Iannello M et al (2013) Structural foundations for the O2 resistance of Desulfomicrobium baculatum [NiFeSe]-hydrogenase. Chem Commun 49:7061–7063

    Article  CAS  Google Scholar 

  56. Kalms J, Schmidt A, Frielingsdorf S et al (2016) Krypton derivatization of an O2-tolerant membrane-bound [NiFe] hydrogenase reveals a hydrophobic tunnel network for gas transport. Angew Chem Int Ed 55:5586–5590

    Article  CAS  Google Scholar 

  57. Montet Y, Amara P, Volbeda A et al (1997) Gas access to the active site of Ni-Fe hydrogenases probed by x-ray crystallography and molecular dynamics. Nat Struct Biol 4:523–526

    Article  CAS  PubMed  Google Scholar 

  58. Fritsch J, Scheerer P, Frielingsdorf S et al (2011) The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulfur center. Nature 479:249–252

    Article  CAS  PubMed  Google Scholar 

  59. Shomura Y, Yoon K-S, Nishihara H et al (2011) Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature 479:253–256

    Article  CAS  PubMed  Google Scholar 

  60. Fritsch J, Lenz O, Friedrich B (2013) Structure, function and biosynthesis of O2-tolerant hydrogenases. Nat Rev Microbiol 11:106–114

    Article  CAS  PubMed  Google Scholar 

  61. Szori-Doroghazi E, Maroti G, Szori M et al (2012) Analyses of the large subunit histidine-rich motif expose an alternative proton transfer pathway in [NiFe] hydrogenases. PLoS One 7:e34666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lubitz W, van Gastel M, Gaertner W (2007) Nickel iron hydrogenases. Met Ions Life Sci 2:279–322

    CAS  Google Scholar 

  63. Barilone JL, Ogata H, Lubitz W et al (2015) Structural differences between the active sites of the Ni-A and Ni-B states of the [NiFe] hydrogenase: an approach by quantum chemistry and single crystal ENDOR spectroscopy. Phys Chem Chem Phys 17:16204–16212

    Article  CAS  PubMed  Google Scholar 

  64. Riethausen J, Ruediger O, Gaertner W et al (2013) Spectroscopic and electrochemical characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Miyazaki F: reversible redox behavior and interactions between electron transfer centers. Chembiochem 14:1714–1719

    Article  CAS  PubMed  Google Scholar 

  65. Buhrke T, Lenz O, Krauss N et al (2005) Oxygen tolerance of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 is based on limited access of oxygen to the active site. J Biol Chem 280:23791–23796

    Article  CAS  PubMed  Google Scholar 

  66. Pandelia ME, Fourmond V, Tron-Infossi P et al (2010) Membrane-bound hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus: enzyme activation, redox intermediates and oxygen tolerance. J Am Chem Soc 132:6991–7004

    Article  CAS  PubMed  Google Scholar 

  67. Saggu M, Zebger I, Ludwig M et al (2009) Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16. J Biol Chem 284:16264–16276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Saggu M, Teutloff C, Ludwig M et al (2010) Comparison of the membrane-bound [NiFe] hydrogenases from R. eutropha H16 and D. vulgaris Miyazaki F in the oxidized ready state by pulsed EPR. Phys Chem Chem Phys 12:2139–2148

    Article  CAS  PubMed  Google Scholar 

  69. Guiral M, Tron P, Belle V et al (2006) Hyperthermostable and oxygen resistant hydrogenases from a hyperthermophilic bacterium Aquifex aeolicus: physicochemical properties. Int J Hydrog Energy 31:1424–1431

    Article  CAS  Google Scholar 

  70. Lamle SE, Albracht SPJ, Armstrong FA (2004) Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: insights into the puzzling difference between unready and ready oxidized inactive states. J Am Chem Soc 126:14899–14909

    Article  CAS  PubMed  Google Scholar 

  71. Fernandez VM, Hatchikian EC, Patil DS et al (1986) ESR-detectable nickel and iron-sulfur centers in relation to the reversible activation of Desulfovibrio gigas hydrogenase. Biochim Biophys Acta Gen Subj 883:145–154

    Article  CAS  Google Scholar 

  72. Albracht SPJ, Ankel-Fuchs D, Boecher R et al (1988) Five new EPR signals assigned to nickel in methyl-coenzyme M reductase from Methanobacterium thermoautotrophicum, strain Marburg. Biochim Biophys Acta 955:86–102

    Article  CAS  Google Scholar 

  73. Gessner C, Trofanchuk O, Kawagoe K et al (1996) Single crystal EPR study of the Ni center of NiFe hydrogenase. Chem Phys Lett 256:518–524

    Article  CAS  Google Scholar 

  74. Trofanchuk O, Stein M, Gessner C et al (2000) Single crystal EPR studies of the oxidized active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Biol Inorg Chem 5:36–44

    Article  CAS  PubMed  Google Scholar 

  75. van Gastel M, Fichtner C, Neese F et al (2005) EPR experiments to elucidate the structure of the ready and unready states of the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F. Biochem Soc Trans 33:7–11

    Article  PubMed  Google Scholar 

  76. Volbeda A, Martin L, Cavazza C et al (2005) Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases. J Biol Inorg Chem 10:239–249

    Article  CAS  PubMed  Google Scholar 

  77. Ogata H, Hirota S, Nakahara A et al (2005) Activation process of [NiFe] hydrogenase elucidated by high-resolution x-ray analyses: conversion of the ready to the unready state. Structure 13:1635–1642

    Article  CAS  PubMed  Google Scholar 

  78. Ogata H, Kellers P, Lubitz W (2010) The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state). J Mol Biol 402:428–444

    Article  CAS  PubMed  Google Scholar 

  79. Carepo M, Tierney DL, Brondino CD et al (2002) 17O ENDOR detection of a solvent-derived Ni-(OHx)-Fe bridge that is lost upon activation of the hydrogenase from Desulfovibrio gigas. J Am Chem Soc 124:281–286

    Article  CAS  PubMed  Google Scholar 

  80. Siegbahn PEM (2007) Hybrid density functional study of the oxidized states of NiFe-hydrogenase. C R Chim 10:766–774

    Article  CAS  Google Scholar 

  81. Pardo A, Lacey AL, Fernandez VM et al (2007) Characterization of the active site of catalytically inactive forms of [NiFe] hydrogenases by density functional theory. J Biol Inorg Chem 12:751–760

    Article  CAS  PubMed  Google Scholar 

  82. Kurkin S, George SJ, Thorneley RNF et al (2004) Hydrogen-induced activation of the [NiFe]-hydrogenase from Allochromatium vinosum as studied by stopped-flow infrared spectroscopy. Biochemistry 43:6820–6831

    Article  CAS  PubMed  Google Scholar 

  83. Bleijlevens B, Broekhuizen FA, De Lacey AL et al (2004) The activation of the [NiFe]-hydrogenase from Allochromatium vinosum. An infrared spectro-electrochemical study. J Biol Inorg Chem 9:743–752

    Article  CAS  PubMed  Google Scholar 

  84. George SJ, Kurkin S, Thorneley RNF et al (2004) Reactions of H2, CO, and O2 with active [NiFe]-hydrogenase from Allochromatium vinosum. A stopped-flow infrared study. Biochemistry 43:6808–6819

    Article  CAS  PubMed  Google Scholar 

  85. Roncaroli F, Bill E, Friedrich B et al (2015) Cofactor composition and function of a H2-sensing regulatory hydrogenase as revealed by Mossbauer and EPR spectroscopy. Chem Sci 6:4495–4507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bagley KA, Van Garderen CJ, Chen M et al (1994) Infrared studies on the interaction of carbon monoxide with divalent nickel in hydrogenase from Chromatium vinosum. Biochemistry 33:9229–9236

    Article  CAS  PubMed  Google Scholar 

  87. Pandelia ME, Ogata H, Currell LJ et al (2010) Inhibition of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F by carbon monoxide: an FTIR and EPR spectroscopic study. Biochim Biophys Acta 1797:304–313

    Article  CAS  PubMed  Google Scholar 

  88. De Lacey AL, Stadler C, Fernandez VM et al (2002) IR spectroelectrochemical study of the binding of carbon monoxide to the active site of Desulfovibrio fructosovorans Ni-Fe hydrogenase. J Biol Inorg Chem 7:318–326

    Article  PubMed  CAS  Google Scholar 

  89. Brecht M, van Gastel M, Buhrke T et al (2003) Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy. J Am Chem Soc 125:13075–13083

    Article  CAS  PubMed  Google Scholar 

  90. Foerster S, van Gastel M, Brecht M et al (2005) An orientation-selected ENDOR and HYSCORE study of the Ni-C active state of Desulfovibrio vulgaris Miyazaki F hydrogenase. J Biol Inorg Chem 10:51–62

    Article  CAS  PubMed  Google Scholar 

  91. Fontecilla-Camps JC, Amara P, Cavazza C et al (2009) Structure-function relationships of anaerobic gas-processing metalloenzymes. Nature 460:814–822

    Article  CAS  PubMed  Google Scholar 

  92. Dole F, Medina M, More C et al (1996) Spin-spin interactions between the Ni site and the [4Fe-4S] centers as a probe of light-induced structural changes in active Desulfovibrio gigas hydrogenase. Biochemistry 35:16399–16406

    Article  CAS  PubMed  Google Scholar 

  93. Medina M, Williams R, Cammack R et al (1994) Studies of light-induced nickel EPR signals in Desulfovibrio gigas hydrogenase. J Chem Soc Faraday Trans 90:2921–2924

    Article  CAS  Google Scholar 

  94. Kellers P, Pandelia ME, Currell LJ et al (2009) FTIR study on the light sensitivity of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F: Ni-C to Ni-L photoconversion, kinetics of proton rebinding and H/D isotope effect. Phys Chem Chem Phys 11:8680–8683

    Article  CAS  PubMed  Google Scholar 

  95. Kampa M, Pandelia ME, Lubitz W et al (2013) A metal-metal bond in the light-induced state of [NiFe] hydrogenases with relevance to hydrogen evolution. J Am Chem Soc 135:3915–3925

    Article  CAS  PubMed  Google Scholar 

  96. De Lacey AL, Fernandez VM, Rousset M et al (2007) Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem Rev 107:4304–4330

    Article  PubMed  CAS  Google Scholar 

  97. Ogata H, Lubitz W, Higuchi Y (2009) [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Dalton Trans 37:7577–7587

    Article  CAS  Google Scholar 

  98. Ogata H, Nishikawa K, Lubitz W (2015) Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Nature 520:571–574

    Article  PubMed  CAS  Google Scholar 

  99. Roberts LM, Lindahl PA (1995) Stoichiometric reductive titrations of Desulfovibrio gigas hydrogenase. J Am Chem Soc 117:2565–2572

    Article  CAS  Google Scholar 

  100. Peters JW, Lanzilotta WN, Lemon BJ et al (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858

    Article  CAS  PubMed  Google Scholar 

  101. Nicolet Y, Piras C, Legrand P et al (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:13–23

    Article  CAS  PubMed  Google Scholar 

  102. Moser CC, Page CC, Farid R et al (1995) Biological electron transfer. J Bioenerg Biomembr 27:263–274

    Article  CAS  PubMed  Google Scholar 

  103. Page CC, Moser CC, Chen X et al (1999) Natural engineering principles of electron tunneling in biological oxidation-reduction. Nature 402:47–52

    Article  CAS  PubMed  Google Scholar 

  104. Mulder DW, Boyd ES, Sarma R et al (2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG. Nature 465:248–251

    Article  CAS  PubMed  Google Scholar 

  105. Lemon BJ, Peters JW (1999) Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 38:12969–12973

    Article  CAS  PubMed  Google Scholar 

  106. Silakov A, Wenk B, Reijerse E et al (2009) 14N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge. Phys Chem Chem Phys 11:6592–6599

    Article  CAS  PubMed  Google Scholar 

  107. Berggren G, Adamska A, Lambertz C et al (2013) Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499:66–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lambertz C, Leidel N, Havelius KG et al (2011) O2 reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase. J Biol Chem 286:40614–40623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Foster CE, Krämer T, Wait AF et al (2012) Inhibition of [FeFe]-hydrogenases by formaldehyde and wider mechanistic implications for biohydrogen activation. J Am Chem Soc 134:7553–7557

    Article  CAS  PubMed  Google Scholar 

  110. Hong G, Cornish AJ, Hegg EL et al (2011) On understanding proton transfer to the biocatalytic [Fe-Fe]H sub-cluster in [Fe-Fe]H2ases: QM/MM MD simulations. Biochim Biophys Acta 1807:510–517

    Article  CAS  PubMed  Google Scholar 

  111. Cornish AJ, Gaertner K, Yang H et al (2011) Mechanism of proton transfer in [FeFe]-hydrogenase from Clostridium pasteurianum. J Biol Chem 286:38341–38347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Long H, King PW, Chang CH (2014) Proton transport in Clostridium pasteurianum [FeFe] hydrogenase I: a computational study. J Phys Chem B 118:890–900

    Article  CAS  PubMed  Google Scholar 

  113. Cornish AJ, Ginovska B, Thelen A et al (2016) Single-amino acid modifications reveal additional controls on the proton pathway of [FeFe]-hydrogenase. Biochemistry 55:3165–3173

    Article  CAS  PubMed  Google Scholar 

  114. Ginovska-Pangovska B, Ho MH, Linehan JC et al (2014) Molecular dynamics study of the proposed proton transport pathways in [FeFe]-hydrogenase. Biochim Biophys Acta 1837:131–138

    Article  CAS  PubMed  Google Scholar 

  115. Albracht SPJ, Roseboom W, Hatchikian EC (2006) The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. I. Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance. J Biol Inorg Chem 11:88–101

    Article  CAS  PubMed  Google Scholar 

  116. Popescu CV, Muenck E (1999) Electronic structure of the H cluster in [Fe]-hydrogenases. J Am Chem Soc 121:7877–7884

    Article  CAS  Google Scholar 

  117. Roseboom W, Lacey AL, Fernandez VM et al (2006) The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy. J Biol Inorg Chem 11:102–118

    Article  CAS  PubMed  Google Scholar 

  118. Silakov A, Kamp C, Reijerse E et al (2009) Spectroelectrochemical characterization of the active site of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii. Biochemistry 48:7780–7786

    Article  CAS  PubMed  Google Scholar 

  119. Adamska A, Silakov A, Lambertz C et al (2012) Identification and characterization of the "super-reduced" state of the H-cluster in [FeFe] hydrogenase: a new building block for the catalytic cycle? Angew Chem Int Ed 51:11458–11462

    Article  CAS  Google Scholar 

  120. Mulder DW, Ratzloff MW, Shepard EM et al (2013) EPR and FTIR analysis of the mechanism of H2 activation by [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii. J Am Chem Soc 135:6921–6929

    Article  CAS  PubMed  Google Scholar 

  121. Zampella G, Greco C, Fantucci P et al (2006) Proton reduction and dihydrogen oxidation on models of the [2Fe] H cluster of [Fe] hydrogenases. A density functional theory investigation. Inorg Chem 45:4109–4118

    Article  CAS  PubMed  Google Scholar 

  122. Bruschi M, Zampella G, Fantucci P et al (2005) DFT investigations of models related to the active site of [NiFe] and [Fe] hydrogenases. Coord Chem Rev 249:1620–1640

    Article  CAS  Google Scholar 

  123. Bruschi M, Fantucci P, De Gioia L (2003) Density functional theory investigation of the active site of [Fe]-hydrogenases: effects of redox state and ligand characteristics on structural, electronic, and reactivity properties of complexes related to the [2Fe] H subcluster. Inorg Chem 42:4773–4781

    Article  CAS  PubMed  Google Scholar 

  124. Fan HJ, Hall MB (2001) A capable bridging ligand for Fe-only hydrogenase: density functional calculations of a low-energy route for heterolytic cleavage and formation of dihydrogen. J Am Chem Soc 123:3828–3829

    Article  CAS  PubMed  Google Scholar 

  125. Ezzaher S, Capon JF, Gloaguen F et al (2007) Evidence for the formation of terminal hydrides by protonation of an asymmetric iron hydrogenase active site mimic. Inorg Chem 46:3426–3428

    Article  CAS  PubMed  Google Scholar 

  126. van der Vlugt JI, Rauchfuss TB, Whaley CM et al (2005) Characterization of a diferrous terminal hydride mechanistically relevant to the Fe-only hydrogenases. J Am Chem Soc 127:16012–16013

    Article  PubMed  CAS  Google Scholar 

  127. Zhao X, Chiang CY, Miller ML et al (2003) Activation of alkenes and H2 by [Fe]-H2ase model complexes. J Am Chem Soc 125:518–524

    Article  CAS  PubMed  Google Scholar 

  128. Zhao X, Georgakaki IP, Miller ML et al (2002) Catalysis of H2/D2 scrambling and other H/D exchange processes by [Fe]-hydrogenase model complexes. Inorg Chem 41:3917–3928

    Article  CAS  PubMed  Google Scholar 

  129. Helm ML, Stewart MP, Bullock RM et al (2011) A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333:863–866

    Article  CAS  PubMed  Google Scholar 

  130. Yang JY, Bullock RM, DuBois MR et al (2011) Fast and efficient molecular electrocatalysts for H2 production: using hydrogenase enzymes as guides. MRS Bull 36:39–47

    Article  CAS  Google Scholar 

  131. Rakowski DuBois M, DuBois DL (2009) The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. Chem Soc Rev 38:62–72

    Article  CAS  PubMed  Google Scholar 

  132. Afting C, Kremmer E, Brucker C et al (2000) Regulation of the synthesis of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of HmdII and HmdIII in Methanothermobacter marburgensis. Arch Microbiol 174:225–232

    Article  CAS  PubMed  Google Scholar 

  133. Pilak O, Mamat B, Vogt S et al (2006) The crystal structure of the apoenzyme of the iron-Sulphur cluster-free hydrogenase. J Mol Biol 358:798–809

    Article  CAS  PubMed  Google Scholar 

  134. Lyon EJ, Shima S, Boecher R et al (2004) Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy. J Am Chem Soc 126:14239–14248

    Article  CAS  PubMed  Google Scholar 

  135. Lyon EJ, Shima S, Buurman G et al (2004) UV-A/blue-light inactivation of the "metal-free" hydrogenase (Hmd) from methanogenic archaea. The enzyme contains functional iron after all. Eur J Biochem 271:195–204

    Article  CAS  PubMed  Google Scholar 

  136. Buurman G, Shima S, Thauer RK (2000) The metal-free hydrogenase from methanogenic archaea: evidence for a bound cofactor. FEBS Lett 485:200–204

    Article  CAS  PubMed  Google Scholar 

  137. Shima S, Schick M, Tamura H (2011) Preparation of [Fe]-hydrogenase from methanogenic archaea. Methods Enzymol 494:119–137

    Article  CAS  PubMed  Google Scholar 

  138. Shima S, Lyon EJ, Thauer RK et al (2005) Mossbauer studies of the iron-sulfur cluster-free hydrogenase: the electronic state of the mononuclear Fe active site. J Am Chem Soc 127:10430–10435

    Article  CAS  PubMed  Google Scholar 

  139. Wang X, Li Z, Zeng X et al (2008) The iron centre of the cluster-free hydrogenase (Hmd): low-spin Fe(II) or low-spin Fe(0)? Chem Commun 30:3555–3557

    Article  CAS  Google Scholar 

  140. Salomone-Stagni M, Stellato F, Whaley CM et al (2010) The iron-site structure of [Fe]-hydrogenase and model systems: an x-ray absorption near edge spectroscopy study. Dalton Trans 39:3057–3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shima S, Lyon EJ, Sordel-Klippert M et al (2004) Structure elucidation: the cofactor of the iron-sulfur cluster free hydrogenase Hmd: structure of the light-inactivation product. Angew Chem Int Ed 43:2547–2551

    Article  CAS  Google Scholar 

  142. Korbas M, Vogt S, Meyer-Klaucke W (2006) The iron-sulfur cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif. J Biol Chem 281:30804–30813

    Article  CAS  PubMed  Google Scholar 

  143. Hiromoto T, Ataka K, Pilak O et al (2009) The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex. FEBS Lett 583:585–590

    Article  CAS  PubMed  Google Scholar 

  144. Shima S, Pilak O, Vogt S et al (2008) The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321:572–575

    Article  CAS  PubMed  Google Scholar 

  145. Hiromoto T, Warkentin E, Moll J et al (2009) The crystal structure of an [Fe]-hydrogenase-substrate complex reveals the framework for H2 activation. Angew Chem Int Ed 48:6457–6460

    Article  CAS  Google Scholar 

  146. Yang X, Hall MB (2009) Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe-Hδ-···Hδ+-O, bond and methenyl-H4MPT+ triggered hydride transfer. J Am Chem Soc 131:10901–10908

    Article  CAS  PubMed  Google Scholar 

  147. Shima S, Chen D, Xu T et al (2015) Reconstitution of [Fe]-hydrogenase using model complexes. Nat Chem 7:995–1002

    Article  CAS  PubMed  Google Scholar 

  148. Abou Hamdan A, Dementin S, Liebgott PP et al (2012) Understanding and tuning the catalytic bias of hydrogenase. J Am Chem Soc 134:8368–8371

    Article  CAS  PubMed  Google Scholar 

  149. Cracknell JA, Vincent KA, Armstrong FA (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 108:2439–2461

    Article  CAS  PubMed  Google Scholar 

  150. Liebgott PP, de Lacey AL, Burlat B et al (2011) Original design of an oxygen-tolerant [NiFe] hydrogenase: major effect of a valine-to-cysteine mutation near the active site. J Am Chem Soc 133:986–997

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are supported by the National Institutes of Health grant GM67626 (to M.W.R. and Y.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sickerman, N.S., Hu, Y. (2019). Hydrogenases. In: Hu, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1876. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8864-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8864-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8863-1

  • Online ISBN: 978-1-4939-8864-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics