Skip to main content

Genome-Wide Analysis for Identifying FOXO Protein-Binding Sites

  • Protocol
  • First Online:
FOXO Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1890))

Abstract

Forkhead box O (FOXO) proteins comprise a superfamily of transcription factors that play important roles in controlling various biological processes. Transcriptional control constitutes a crucial component in regulating complex biological processes. The identification of cis-regulatory elements is essential to understand the regulatory mechanism of gene expression. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is widely used to identify the cis-regulatory elements of transcription factors and other DNA-binding proteins on a genome-wide level. It is a powerful tool to analyze the regulatory networks underlying the biological processes. Here, we describe a detailed protocol for preparing ChIP-seq samples that are used for sequencing and subsequent data analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hannenhalli S, Kaestner KH (2009) The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10:233–240

    Article  CAS  Google Scholar 

  2. Furuyama T, Nakazawa T, Nakano I, Mori N (2000) Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 349:629–634

    Article  CAS  Google Scholar 

  3. Xuan Z, Zhang MQ (2005) From worm to human: bioinformatics approaches to identify FOXO target genes. Mech Ageing Dev 126:209–215

    Article  CAS  Google Scholar 

  4. Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27:2276–2288

    Article  CAS  Google Scholar 

  5. Chiu CF, Chang YW, Kuo KT, Shen YS, Liu CY, Yu YH, Cheng CC, Lee KY, Chen FC, Hsu MK et al (2016) NF-kappaB-driven suppression of FOXO3a contributes to EGFR mutation-independent gefitinib resistance. Proc Natl Acad Sci U S A 113:E2526–E2535

    Article  CAS  Google Scholar 

  6. Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284:23204–23216

    Article  CAS  Google Scholar 

  7. Stittrich AB, Haftmann C, Sgouroudis E, Kuhl AA, Hegazy AN, Panse I, Riedel R, Flossdorf M, Dong J, Fuhrmann F et al (2010) The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat Immunol 11:1057–1062

    Article  CAS  Google Scholar 

  8. Hosaka T, Biggs WH 3rd, Tieu D, Boyer AD, Varki NM, Cavenee WK, Arden KC (2004) Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A 101:2975–2980

    Article  CAS  Google Scholar 

  9. van der Vos KE, Coffer PJ (2011) The extending network of FOXO transcriptional target genes. Antioxid Redox Signal 14:579–592

    Article  Google Scholar 

  10. Webb AE, Kundaje A, Brunet A (2016) Characterization of the direct targets of FOXO transcription factors throughout evolution. Aging Cell 15:673–685

    Article  CAS  Google Scholar 

  11. Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10:605–616

    Article  CAS  Google Scholar 

  12. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  CAS  Google Scholar 

  13. Boyd KE, Farnham PJ (1999) Coexamination of site-specific transcription factor binding and promoter activity in living cells. Mol Cell Biol 19:8393–8399

    Article  CAS  Google Scholar 

  14. Orlando V, Strutt H, Paro R (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11:205–214

    Article  CAS  Google Scholar 

  15. Jackman RW, Wu CL, Kandarian SC (2012) The ChIP-seq-defined networks of Bcl-3 gene binding support its required role in skeletal muscle atrophy. PLoS One 7:e51478

    Article  CAS  Google Scholar 

  16. Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV et al (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488:116–120

    Article  CAS  Google Scholar 

  17. Shin DJ, Joshi P, Hong SH, Mosure K, Shin DG, Osborne TF (2012) Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis. Nucleic Acids Res 40:11499–11509

    Article  CAS  Google Scholar 

  18. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  19. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  Google Scholar 

  20. Bailey TL (2002) Discovering novel sequence motifs with MEME. Curr Protoc Bioinformatics Chapter 2:Unit 2 4

    Google Scholar 

  21. Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23:257–258

    Article  CAS  Google Scholar 

  22. Blecher-Gonen R, Barnett-Itzhaki Z, Jaitin D, Amann-Zalcenstein D, Lara-Astiaso D, Amit I (2013) High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states. Nat Protoc 8:539–554

    Article  Google Scholar 

  23. Klockenbusch C, Kast J (2010) Optimization of formaldehyde cross-linking for protein interaction analysis of non-tagged integrin beta1. J Biomed Biotechnol 2010:927585

    Article  Google Scholar 

  24. Adli M, Bernstein BE (2011) Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat Protoc 6:1656–1668

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ju Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shin, DJ., Joshi, P., Shin, DG., Wang, L. (2019). Genome-Wide Analysis for Identifying FOXO Protein-Binding Sites. In: Link, W. (eds) FOXO Transcription Factors. Methods in Molecular Biology, vol 1890. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8900-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8900-3_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8899-0

  • Online ISBN: 978-1-4939-8900-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics