Skip to main content

Central and Peripheral Secondary Cell Death Processes after Transient Global Ischemia in Nonhuman Primate Cerebellum and Heart

  • Protocol
  • First Online:
Neural Stem Cells

Abstract

Cerebral ischemia and its pathological sequelae are responsible for severe neurological deficits generally attributed to the neural death within the infarcted tissue and adjacent regions. Distal brain regions, and even peripheral organs, may be subject to more subtle consequences of the primary ischemic event which can initiate parallel disease processes and promote comorbid symptomology. In order to characterize the susceptibility of cerebellar brain regions and the heart to transient global ischemia (TGI) in nonhuman primates (NHP), brain and heart tissues were harvested 6 months post-TGI injury. Immunostaining analysis with unbiased stereology revealed significant cell death in lobule III and IX of the TGI cerebellum when compared to sham cerebellum, coinciding with an increase in inflammatory and apoptotic markers. Cardiac tissue analysis showed similar increases in inflammatory and apoptotic cells within TGI hearts. A progressive inflammatory response and cell death within the cerebellum and heart of chronic TGI NHPs indicate secondary injury processes manifesting both centrally and peripherally. This understanding of distal disease processes of cerebral ischemia underscores the importance of the chronic aberrant inflammatory response and emphasizes the needs for therapeutic options tailored to target these pathways. Here, we discuss the protocols for characterizing the histopathological effects of transient global ischemia in nonhuman primate cerebellum and heart, with an emphasis on the inflammatory and apoptotic cell death processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neubuerger KT (1954) Lesions of the human brain following circulatory arrest. J Neuropathol Exp Neurol 13(1):144–160 PubMed: 13118380

    Article  PubMed  CAS  Google Scholar 

  2. Fukuda S, del Zoppo GJ (2003) Models of focal cerebral ischemia in the nonhuman primate. ILAR J 44(2):96–104 PubMed: 12652004

    Article  PubMed  CAS  Google Scholar 

  3. Nemoto EM, Bleyaert AL, Stezoski SW, Moossy J, Rao GR, Safar P (1977) Global brain ischemia: a reproducible monkey model. Stroke 8(5):558–564 PubMed: 410121

    Article  PubMed  CAS  Google Scholar 

  4. Tabuchi E, Endo S, Ono T, Nishijo H, Kuze S, Kogure K (1992) Hippocampal neuronal damage after transient forebrain ischemia in monkeys. Brain Res Bull 29(5):685–690 PubMed: 1422866

    Article  PubMed  CAS  Google Scholar 

  5. Hara K, Yasuhara T, Matsukawa N, Maki M, Masuda T, Yu G, Xu L, Tambrallo L, Rodriguez NA, Stern DM, Kawase T, Yamashima T, Buccafusco JJ, Hess DC, Borlongan CV (2007) Hippocampal CA1 cell loss in a non-human primate model of transient global ischemia: a pilot study. Brain Res Bull 74(1–3):164–171. https://doi.org/10.1016/j.brainresbull.2007.06.014 PubMed: 17683803

    Article  PubMed  CAS  Google Scholar 

  6. Hong JH, Lee H, Lee SR (2016) Protective effect of resveratrol against neuronal damage following transient global cerebral ischemia in mice. J Nutr Biochem 27:146–152. https://doi.org/10.1016/j.jnutbio.2015.08.029 PubMed: 26421359

    Article  PubMed  CAS  Google Scholar 

  7. Ishikawa H, Tajiri N, Vasconcellos J, Kaneko Y, Mimura O, Dezawa M, Borlongan CV (2013) Ischemic stroke brain sends indirect cell death signals to the heart. Stroke 44(11):3175–3182. https://doi.org/10.1161/STROKEAHA.113.001714 PubMed: 24008571

    Article  PubMed  Google Scholar 

  8. Pearce A, Lockwood C, Van Den Heuvel C (2015) The use of therapeutic magnesium for neuroprotection during global cerebral ischemia associated with cardiac arrest and cardiac bypass surgery in adults: a systematic review protocol. JBI Database System Rev Implement Rep 13(4):3–13. https://doi.org/10.11124/jbisrir-2015-1675 [PubMed: 26447069]

    PubMed  Google Scholar 

  9. Sun L, Ai J, Wang N, Zhang R, Li J, Zhang T, Wu W, Hang P, Lu Y, Yang B (2010) Cerebral ischemia elicits aberration in myocardium contractile function and intracellular calcium handling. Cell Physiol Biochem 26(3):421–430. https://doi.org/10.1159/000320584 PubMed: 20798527

    Article  PubMed  CAS  Google Scholar 

  10. Wang R, Liu YY, Liu XY, Jia SW, Zhao J, Cui D, Wang L (2014) Resveratrol protects neurons and the myocardium by reducing oxidative stress and ameliorating mitochondria damage in a cerebral ischemia rat model. Cell Physiol Biochem 34(3):854–864. https://doi.org/10.1159/000366304 PubMed: 25199673

    Article  PubMed  CAS  Google Scholar 

  11. Oppenheimer SM, Hachinski VC (1992) The cardiac consequences of stroke. Neurol Clin 10(1):167–176 PubMed: 1557001

    Article  PubMed  CAS  Google Scholar 

  12. Prosser J, MacGregor L, Lees KR, Diener HC, Hacke W, Davis S, Investigators V (2007) Predictors of early cardiac morbidity and mortality after ischemic stroke. Stroke 38(8):2295–2302. https://doi.org/10.1161/STROKEAHA.106.471813 PubMed: 17569877

    Article  PubMed  Google Scholar 

  13. Bunevicius A, Kazlauskas H, Raskauskiene N, Mickuviene N, Ndreu R, Corsano E, Bunevicius R (2015) Role of N-terminal pro-B-type natriuretic peptide, high-sensitivity C-reactive protein, and inteleukin-6 in predicting a poor outcome after a stroke. Neuroimmunomodulation 22(6):365–372. https://doi.org/10.1159/000381218 PubMed: 25967464

    Article  PubMed  CAS  Google Scholar 

  14. Sun YP, Wei CP, Ma SC, Zhang YF, Qiao LY, Li DH, Shan RB (2015) Effect of carvedilol on serum heart-type fatty acid-binding protein, brain natriuretic peptide, and cardiac function in patients with chronic heart failure. J Cardiovasc Pharmacol 65(5):480–484. https://doi.org/10.1097/FJC.0000000000000217 PubMed: 25945865

    Article  PubMed  CAS  Google Scholar 

  15. Shibazaki K, Kimura K, Aoki J, Sakai K, Saji N, Uemura J (2014) Plasma brain natriuretic peptide as a predictive marker of early recurrent stroke in cardioembolic stroke patients. J Stroke Cerebrovasc Dis 23(10):2635–2640. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.003 PubMed: 25238924

    Article  PubMed  Google Scholar 

  16. Kannel WB (2000) The Framingham study: ITS 50-year legacy and future promise. J Atheroscler Thromb 6(2):60–66 PubMed: 10872616

    Article  PubMed  CAS  Google Scholar 

  17. Lawlor DA, Smith GD, Leon DA, Sterne JA, Ebrahim S (2002) Secular trends in mortality by stroke subtype in the 20th century: a retrospective analysis. Lancet 360(9348):1818–1823. https://doi.org/10.1016/S0140-6736(02)11769-7 PubMed: 12480358

    Article  PubMed  Google Scholar 

  18. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–415. https://doi.org/10.1038/nrn1106 PubMed: 12728267

    Article  PubMed  CAS  Google Scholar 

  19. Zhang ZG, Chopp M (2009) Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8(5):491–500. https://doi.org/10.1016/S1474-4422(09)70061-4. PubMed: 19375666

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shibazaki K, Kimura K, Okada Y, Iguchi Y, Terasawa Y, Aoki J (2009) Heart failure may be associated with the onset of ischemic stroke with atrial fibrillation: a brain natriuretic peptide study. J Neurol Sci 281(1–2):55–57. https://doi.org/10.1016/j.jns.2009.02.374 PubMed: 19321180

    Article  PubMed  Google Scholar 

  21. Palumbo I, Palumbo B, Fravolini ML, Marcantonini M, Perrucci E, Latini ME, Falcinelli L, Sabalich I, Tranfaglia C, Schillaci G, Mannarino E, Aristei C (2016) Brain natriuretic peptide as a cardiac marker of transient radiotherapy-related damage in left-sided breast cancer patients: a prospective study. Breast 25:45–50. https://doi.org/10.1016/j.breast.2015.10.004 PubMed: 26547836

    Article  PubMed  CAS  Google Scholar 

  22. Favilla CG, Ingala E, Jara J, Fessler E, Cucchiara B, Messe SR, Mullen MT, Prasad A, Siegler J, Hutchinson MD, Kasner SE (2015) Predictors of finding occult atrial fibrillation after cryptogenic stroke. Stroke 46(5):1210–1215. https://doi.org/10.1161/STROKEAHA.114.007763 PubMed: 25851771

    Article  PubMed  Google Scholar 

  23. Acosta SA, Mashkouri S, Nwokoye D, Lee JY, Borlongan CV (2017) Chronic inflammation and apoptosis propagate in ischemic cerebellum and heart of non-human primates. Oncotarget 8(61):102820–102834. https://doi.org/10.18632/oncotarget.18330 PubMed: 5732692

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar V. Borlongan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, JY. et al. (2019). Central and Peripheral Secondary Cell Death Processes after Transient Global Ischemia in Nonhuman Primate Cerebellum and Heart. In: Daadi, M. (eds) Neural Stem Cells. Methods in Molecular Biology, vol 1919. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9007-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9007-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9005-4

  • Online ISBN: 978-1-4939-9007-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics