Skip to main content

Generation of Definitive Neural Progenitor Cells from Human Pluripotent Stem Cells for Transplantation into Spinal Cord Injury

  • Protocol
  • First Online:
Neural Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1919))

Abstract

In this chapter, we first describe two interchangeable protocols optimized in our lab for deriving definitive neuronal progenitor cells from human pluripotent stem cells (hPSCs). The resultant NPCs can then be propagated and differentiated to produce differing proportions of neurons, oligodendrocytes, and astrocytes as required for in vitro cell culture studies or in vivo transplantation. Following these protocols, we explain the method for transplanting these cells into the rat model of spinal cord injury (SCI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss S, Dunne C, Hewson J et al (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  3. Emgård M, Piao J, Aineskog H et al (2014) Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord. Exp Neurol 253:138–145

    Article  PubMed  Google Scholar 

  4. Keirstead HS, Nistor G, Bernal G et al (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Karimi-Abdolrezaee S, Eftekharpour E, Wang J et al (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26:3377–3389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Cummings BJ, Uchida N, Tamaki SJ et al (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A 102:14069–14074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tao Y, Zhang S-C (2016) Neural subtype specification from human pluripotent stem cells. Cell Stem Cell 19:573–586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Salewski RP, Buttigieg J, Mitchell RA et al (2013) The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway. Stem Cells Dev 22:383–396

    Article  PubMed  CAS  Google Scholar 

  9. Gaiano N, Fishell G (2002) The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25:471–490

    Article  PubMed  CAS  Google Scholar 

  10. Wen Y, Jin S (2014) Production of neural stem cells from human pluripotent stem cells. J Biotechnol 188:122–129

    Article  PubMed  CAS  Google Scholar 

  11. Smukler SR, Runciman SB, Xu S et al (2006) Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J Cell Biol 172:79–90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chambers SM, Fasano CA, Papapetrou EP et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ahuja CS, Fehlings M (2016) Concise review: bridging the gap: novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem Cells Transl Med

    Google Scholar 

  14. Ahuja CS, Martin AR, Fehlings M (2016) Recent advances in managing a spinal cord injury secondary to trauma. F1000Res 5

    Google Scholar 

  15. Forgione N, Karadimas SK, Foltz WD et al (2014) Bilateral contusion-compression model of incomplete traumatic cervical spinal cord injury. J Neurotrauma 31:1776–1788

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wilcox JT, Satkunendrarajah K, Nasirzadeh Y et al (2017) Generating level-dependent models of cervical and thoracic spinal cord injury: exploring the interplay of neuroanatomy, physiology, and function. Neurobiol Dis 105:194–212

    Article  PubMed  Google Scholar 

  17. Khazaei M, Ahuja CS, Fehlings MG (2017) Induced pluripotent stem cells for traumatic spinal cord injury. Front Cell Dev Biol 4

    Google Scholar 

  18. Ahuja CS, Wilson JR, Nori S et al (2017) Traumatic spinal cord injury. Nat Rev Dis Primer 3:17018

    Article  Google Scholar 

  19. Tsuji O, Miura K, Okada Y et al (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci 107:12704–12709

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Nori S, Okada Y, Yasuda A et al (2011) Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci 108:16825–16830

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Kobayashi Y, Okada Y, Itakura G et al (2012) Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One 7:e52787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Karimi-Abdolrezaee S, Eftekharpour E, Wang J et al (2010) Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci 30:1657–1676

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Alexanian AR, Svendsen CN, Crowe MJ et al (2011) Transplantation of human glial-restricted neural precursors into injured spinal cord promotes functional and sensory recovery without causing allodynia. Cytotherapy 13:61–68

    Article  PubMed  Google Scholar 

  24. Emgård M, Holmberg L, Samuelsson E-B et al (2009) Human neural precursor cells continue to proliferate and exhibit low cell death after transplantation to the injured rat spinal cord. Brain Res 1278:15–26

    Article  PubMed  Google Scholar 

  25. Woo S-M, Kim J, Han H-W et al (2009) Notch signaling is required for maintaining stem-cell features of neuroprogenitor cells derived from human embryonic stem cells. BMC Neurosci 10:97

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Fehlings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khazaei, M., Ahuja, C.S., Rodgers, C.E., Chan, P., Fehlings, M.G. (2019). Generation of Definitive Neural Progenitor Cells from Human Pluripotent Stem Cells for Transplantation into Spinal Cord Injury. In: Daadi, M. (eds) Neural Stem Cells. Methods in Molecular Biology, vol 1919. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9007-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9007-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9005-4

  • Online ISBN: 978-1-4939-9007-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics