Skip to main content

Derivation of Neural Stem Cells from Human Parthenogenetic Stem Cells

  • Protocol
  • First Online:
Neural Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1919))

Abstract

We have previously shown that human parthenogenetic stem cells (hpSC) can be chemically directed to differentiate into a homogeneous population of multipotent neural stem cells (hpNSC) that are scalable, cryopreservable, express all the appropriate neural markers, and can be further differentiated into functional dopaminergic neurons. Differentiation of hpSC into hpNSC provides a platform to study the molecular basis of human neural differentiation, to develop cell culture models of neural disease, and to provide neural stem cells for the treatment of neurodegenerative diseases. Additionally, the hpNSC that are generated could serve as a platform for drug discovery and the determination of pharmaceutical-induced neural toxicity. Here, we describe in detail the stepwise protocol that was developed in our laboratory that facilitates the highly efficient and reproducible differentiation of hpSC into hpNSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, Pryzhkova MV (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9(3):432–449. https://doi.org/10.1089/clo.2007.0033

    Article  PubMed  CAS  Google Scholar 

  2. Revazova ES, Turovets NA, Kochetkova OD, Agapova LS, Sebastian JL, Pryzhkova MV, Smolnikova VI, Kuzmichev LN, Janus JD (2008) HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 10(1):11–24. https://doi.org/10.1089/clo.2007.0063

    Article  PubMed  CAS  Google Scholar 

  3. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366(9502):2019–2025. https://doi.org/10.1016/S0140-6736(05)67813-0

    Article  PubMed  Google Scholar 

  4. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  PubMed  CAS  Google Scholar 

  5. Gonzalez R, Garitaonandia I, Abramihina T, Wambua GK, Ostrowska A, Brock M, Noskov A, Boscolo FS, Craw JS, Laurent LC, Snyder EY, Semechkin RA (2013) Deriving dopaminergic neurons for clinical use. A practical approach. Sci Rep 3(1463):1–5. https://doi.org/10.1038/srep01463

    Article  CAS  Google Scholar 

  6. Zhu S, Wurdak H, Wang J, Lyssiotis CA, Peters EC, Cho CY, Wu X, Schultz PG (2009) A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell 4(5):416–426. https://doi.org/10.1016/j.stem.2009.04.001

    Article  PubMed  CAS  Google Scholar 

  7. Zhou J, Su P, Li D, Tsang S, Duan E, Wang F (2010) High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells 28(10):1741–1750. https://doi.org/10.1002/stem.504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gonzalez R, Garitaonandia I, Crain A, Poustovoitov M, Abramihina T, Noskov A, Jiang C, Morey R, Laurent LC, Elsworth JD, Snyder EY, Redmond DE Jr, Semechkin R (2015) Proof of concept studies exploring the safety and functional activity of human parthenogenetic-derived neural stem cells for the treatment of Parkinson's disease. Cell Transplant 24(4):681–690. https://doi.org/10.3727/096368915X687769

    Article  PubMed  Google Scholar 

  9. Gonzalez R, Garitaonandia I, Poustovoitov M, Abramihina T, McEntire C, Culp B, Attwood J, Noskov A, Christiansen-Weber T, Khater M, Mora-Castilla S, To C, Crain A, Sherman G, Semechkin A, Laurent LC, Elsworth JD, Sladek J, Snyder EY, Redmond DE Jr, Kern RA (2016) Neural stem cells derived from human parthenogenetic stem cells engraft and promote recovery in a nonhuman primate model of Parkinson’s disease. Cell Transplant. https://doi.org/10.3727/096368916X691682

    Article  PubMed  Google Scholar 

  10. ClinicalTrials.gov (2016) A study to evaluate the safety of neural stem cells in patients with parkinson’s disease. https://clinicaltrials.gov/ct2/show/NCT02452723

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gonzalez, R., Garitaonandia, I., Semechkin, A., Kern, R. (2019). Derivation of Neural Stem Cells from Human Parthenogenetic Stem Cells. In: Daadi, M. (eds) Neural Stem Cells. Methods in Molecular Biology, vol 1919. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9007-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9007-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9005-4

  • Online ISBN: 978-1-4939-9007-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics