Skip to main content

In Vitro Functional Characterization of Human Neurons and Astrocytes Using Calcium Imaging and Electrophysiology

  • Protocol
  • First Online:
Neural Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1919))

Abstract

Recent progress in stem cell biology and epigenetic reprogramming has opened up previously unimaginable possibilities to study and develop regenerative approaches for neurological disorders. Human neurons and glial cells can be generated by differentiation of embryonic and neural stem cells and from somatic cells through reprogramming to pluripotency (followed by differentiation) as well as by direct conversion. All of these cells have the potential to be used for studying and treating neurological disorders. However, before considering using human neural cells derived from these sources for modelling or regenerative purposes, they need to be verified in terms of functionality and similarity to endogenous cells in the central nervous system (CNS).

In this chapter, we describe how to assess functionality of neurons and astrocytes derived from stem cells and through direct reprogramming, using calcium imaging and electrophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uchida N et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97(26):14720–14725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  5. Tao Y, Zhang SC (2016) Neural subtype specification from human pluripotent stem cells. Cell Stem Cell 19(5):573–586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Pang ZP et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Vierbuchen T et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lujan E et al (2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 109(7):2527–2532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yang N et al (2013) Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol 31(5):434–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Caiazzo M et al (2015) Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Rep 4(1):25–36

    Article  CAS  Google Scholar 

  11. Zhang Y et al (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78(5):785–798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yang N et al (2017) Generation of pure GABAergic neurons by transcription factor programming. Nat Methods 14(6):621–628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. Canals I, Ginisty A, Quist E, Timmerman R, Fritze J, Miskinyte G, Monni E, Hansen MG, Hidalgo I, Bryder D, Bengzon J, Ahlenius H. Nat Methods. 2018 Sep;15(9):693–696. https://doi.org/10.1038/s41592-018-0103-2. Epub 2018 Aug 20. PMID: 30127505

    Article  PubMed  CAS  Google Scholar 

  14. Ehrlich M et al (2017) Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A 114(11):E2243–E2252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kallur T et al (2006) Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. J Neurosci Res 84(8):1630–1644

    Article  PubMed  CAS  Google Scholar 

  16. Tornero D et al (2017) Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain 140(3):692–706

    PubMed  Google Scholar 

  17. Tornero D et al (2013) Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain 136(Pt 12):3561–3577

    Article  PubMed  Google Scholar 

  18. Miskinyte G et al (2017) Direct conversion of human fibroblasts to functional excitatory cortical neurons integrating into human neural networks. Stem Cell Res Ther 8(1):207

    Article  PubMed  PubMed Central  Google Scholar 

  19. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    Article  PubMed  CAS  Google Scholar 

  20. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885

    Article  PubMed  CAS  Google Scholar 

  21. Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275(5301):844–847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Parpura V et al (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483):744–747

    Article  PubMed  CAS  Google Scholar 

  23. Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19(2):182–189

    Article  PubMed  CAS  Google Scholar 

  24. Paredes RM et al (2008) Chemical calcium indicators. Methods 46(3):143–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bedner P et al (2015) Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 138(Pt 5):1208–1222

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dallerac G, Chever O, Rouach N (2013) How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front Cell Neurosci 7:159

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chung WS, Allen NJ, Eroglu C (2015) Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol 7(9):a020370

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henrik Ahlenius or Zaal Kokaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hansen, M.G., Tornero, D., Canals, I., Ahlenius, H., Kokaia, Z. (2019). In Vitro Functional Characterization of Human Neurons and Astrocytes Using Calcium Imaging and Electrophysiology. In: Daadi, M. (eds) Neural Stem Cells. Methods in Molecular Biology, vol 1919. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9007-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9007-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9005-4

  • Online ISBN: 978-1-4939-9007-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics