Skip to main content

Midbrain Dopaminergic Neurons Differentiated from Human-Induced Pluripotent Stem Cells

  • Protocol
  • First Online:
Neural Stem Cells

Abstract

The work with midbrain dopaminergic neurons (mDAN) differentiation might seem to be hard. There are about 40 different published protocols for mDAN differentiation, which are eventually modified according to the respective laboratory. In many cases, protocols are not fully described, failing to provide essential tips for researchers starting in the field. Considering that commercial kits produce low mDAN percentages (20–50%), we chose to follow a mix of four main protocols based on Kriks and colleagues’ protocol, from which the resulting mDAN were engrafted with success in three different animal models of Parkinson’s disease. We present a differential step-by-step methodology for generating mDAN directly from human-induced pluripotent stem cells cultured with E8 medium on Geltrex, without culture on primary mouse embryonic fibroblasts prior to mDAN differentiation, and subsequent exposure of neurons to rock inhibitor during passages for improving cell viability. The protocol described here allows obtaining mDAN with phenotypical and functional characteristics suitable for in vitro modeling, cell transplantation, and drug screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh VK, Kalsan M, Kumar N, Saini A, Chandra R (2015) Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 3:2. https://doi.org/10.3389/fcell.2015.00002

    Article  PubMed  PubMed Central  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  3. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. https://doi.org/10.1126/science.1151526

    Article  PubMed  CAS  Google Scholar 

  4. Chou B-K, Gu H, Gao Y, Dowey SN, Wang Y, Shi J et al (2015) A facile method to establish human induced pluripotent stem cells from adult blood cells under feeder-free and xeno-free culture conditions: a clinically compliant approach. Stem Cells Transl Med 4:320–332. https://doi.org/10.5966/sctm.2014-0214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chou B-K, Mali P, Huang X, Ye Z, Dowey SN, Resar LM et al (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21:518–529. https://doi.org/10.1038/cr.2011.12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dowey SN, Huang X, Chou B-K, Ye Z, Cheng L (2012) Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc 7:2013–2021. https://doi.org/10.1038/nprot.2012.121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Oliveira Á, Ulrich H (2016) Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology 104:272–281. https://doi.org/10.1016/J.NEUROPHARM.2015.10.008

    Article  PubMed  CAS  Google Scholar 

  8. Kriks S, Shim J-W, Piao J, Ganat YM, Wakeman DR, Xie Z et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547. https://doi.org/10.1038/nature10648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Tomishima M (2012) Midbrain dopamine neurons from hESCs. Harvard Stem Cell Institute, Cambridge, MA. https://doi.org/10.3824/stembook.1.70.1 http://www.stembook.org

    Book  Google Scholar 

  10. Zhang P, Xia N, Reijo Pera RA (2014) Directed dopaminergic neuron differentiation from human pluripotent stem cells. J Vis Exp 91:51737. https://doi.org/10.3791/51737

    Article  CAS  Google Scholar 

  11. Nolbrant S, Heuer A, Parmar M, Kirkeby A (2017) Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation. Nat Protoc 12:1962–1979. https://doi.org/10.1038/nprot.2017.078

    Article  PubMed  CAS  Google Scholar 

  12. Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran H-D, Göke J et al (2016) Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19:248–257. https://doi.org/10.1016/j.stem.2016.07.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Boyer LF, Campbell B, Larkin S, Mu Y, Gage FH, Boyer LF et al (2012) Dopaminergic differentiation of human pluripotent cells. Curr Protoc Stem Cell Biol. John Wiley & Sons, Inc., Hoboken, NJ, pp 1H.6.1–1H.6.11. https://doi.org/10.1002/9780470151808.sc01h06s22

    Book  Google Scholar 

  14. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280. https://doi.org/10.1038/nbt.1529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tomishima M (2014) Neural induction – Dual SMAD inhibition. StemBook. http://coredinates.org/resources/DSi.pdf. Accessed 10 Jan 2018

  16. Fasano CA, Chambers SM, Lee G, Tomishima MJ, Studer L (2010) Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell 6:336–347. https://doi.org/10.1016/j.stem.2010.03.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lee G, Chambers SM, Tomishima MJ, Studer L (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5:688–701. https://doi.org/10.1038/nprot.2010.35

    Article  PubMed  CAS  Google Scholar 

  18. Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N et al (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 101:12543–12548. https://doi.org/10.1073/pnas.0404700101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sundberg M, Bogetofte H, Lawson T, Jansson J, Smith G, Astradsson A et al (2013) Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 31:1548–1562. https://doi.org/10.1002/stem.1415

    Article  PubMed  CAS  Google Scholar 

  20. Gerrard L, Rodgers L, Cui W (2005) Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling. Stem Cells 23:1234–1241. https://doi.org/10.1634/stemcells.2005-0110

    Article  PubMed  CAS  Google Scholar 

  21. Shi G, Jin Y (2010) Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res Ther 1:1–9. https://doi.org/10.1186/scrt39

    Article  CAS  Google Scholar 

  22. Wu JQ, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S et al (2010) Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci U S A 107:5254–5259. https://doi.org/10.1073/pnas.0914114107

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang S (2014) Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells 6:305. https://doi.org/10.4252/wjsc.v6.i3.305

    Article  PubMed  PubMed Central  Google Scholar 

  24. Friling S, Andersson E, Thompson LH, Jonsson ME, Hebsgaard JB, Nanou E et al (2009) Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc Natl Acad Sci 106:7613–7618. https://doi.org/10.1073/pnas.0902396106

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lin W, Metzakopian E, Mavromatakis YE, Gao N, Balaskas N, Sasaki H et al (2009) Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. Dev Biol 333:386–396. https://doi.org/10.1016/j.ydbio.2009.07.006

    Article  PubMed  CAS  Google Scholar 

  26. Arenas E, Denham M, Villaescusa JC (2015) How to make a midbrain dopaminergic neuron. Development 142:1918–1936. https://doi.org/10.1242/dev.097394

    Article  PubMed  CAS  Google Scholar 

  27. Glaser T, Corrêa-Velloso J, Oliveira-Giacomelli Á, Teng YD, Ulrich H (2017) Dopaminergic and GABAergic neuron in vitro differentiation from embryonic stem cells. Humana Press, New York, NY, pp 45–53. https://doi.org/10.1007/978-1-4939-7024-7_3

    Book  Google Scholar 

  28. Maxwell SL, Li M (2005) Midbrain dopaminergic development in vivo and in vitro from embryonic stem cells. J Anat 207:209–218. https://doi.org/10.1111/j.1469-7580.2005.00453.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wallén A, Perlmann T (2003) Transcriptional control of dopamine neuron development. Ann N Y Acad Sci 991:48–60. https://doi.org/10.1111/j.1749-6632.2003.tb07462.x

    Article  PubMed  Google Scholar 

  30. Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 14:1709–1725. https://doi.org/10.1093/hmg/ddi178

    Article  PubMed  CAS  Google Scholar 

  31. Reyes S, Fu Y, Double K, Thompson L, Kirik D, Paxinos G et al (2012) GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. J Comp Neurol 520:2591–2607. https://doi.org/10.1002/cne.23051

    Article  PubMed  CAS  Google Scholar 

  32. Hartfield EM, Yamasaki-Mann M, Ribeiro Fernandes HJ, Vowles J, James WS, Cowley SA et al (2014) Physiological characterisation of human iPS-derived dopaminergic neurons. PLoS One 9:e87388. https://doi.org/10.1371/journal.pone.0087388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4:2866–2876

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Grow DA, Simmons DV, Gomez JA, Wanat MJ, McCarrey JR, Paladini CA et al (2016) Differentiation and characterization of dopaminergic neurons from baboon induced pluripotent stem cells. Stem Cells Transl Med 5:1133–1144. https://doi.org/10.5966/sctm.2015-0073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Guzman JN, Sanchez-Padilla J, Chan CS, Surmeier DJ (2009) Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci 29:11011–11019. https://doi.org/10.1523/JNEUROSCI.2519-09.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Surmeier DJ (2007) Personal view calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Neurology 6(10):933–938

    PubMed  CAS  Google Scholar 

  37. Claassen DA, Desler MM, Rizzino A (2009) ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. Mol Reprod Dev 76:722–732. https://doi.org/10.1002/mrd.21021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Li X, Krawetz R, Liu S, Meng G, Rancourt DE (2008) ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Hum Reprod 24:580–589. https://doi.org/10.1093/humrep/den404

    Article  PubMed  CAS  Google Scholar 

  39. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686. https://doi.org/10.1038/nbt1310

    Article  PubMed  CAS  Google Scholar 

  40. Lu HF, Chai C, Lim TC, Leong MF, Lim JK, Gao S et al (2014) A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials 35:2816–2826. https://doi.org/10.1016/j.biomaterials.2013.12.050

    Article  PubMed  CAS  Google Scholar 

  41. Tofoli FA, Dasso M, Morato-Marques M, Nunes K, Pereira LA, da Silva GS et al (2016) Increasing the genetic admixture of available lines of human pluripotent stem cells. Sci Rep 6:34699. https://doi.org/10.1038/srep34699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang Y, Chou B-K, Dowey S, He C, Gerecht S, Cheng L (2013) Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res 11:1103–1116. https://doi.org/10.1016/j.scr.2013.07.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Maddah M, Shoukat-Mumtaz U, Nassirpour S, Loewke K (2014) A system for automated, noninvasive, morphology-based evaluation of induced pluripotent stem cell cultures. J Lab Autom 19:454–460. https://doi.org/10.1177/2211068214537258

    Article  PubMed  Google Scholar 

  44. Li M, Zou Y, Lu Q, Tang N, Heng A, Islam I et al (2016) Efficient derivation of dopaminergic neurons from SOX1− floor plate cells under defined culture conditions. J Biomed Sci 23:34. https://doi.org/10.1186/s12929-016-0251-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhang X-Q, Zhang S-C (2010) Differentiation of neural precursors and dopaminergic neurons from human embryonic stem cells. Methods Mol Biol 584:355–366. https://doi.org/10.1007/978-1-60761-369-5_19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lu J, Zhong X, Liu H, Hao L, Huang CT-L, Sherafat MA et al (2015) Generation of serotonin neurons from human pluripotent stem cells. Nat Biotechnol 34:89–94. https://doi.org/10.1038/nbt.3435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Qi Y, Zhang X-J, Renier N, Wu Z, Atkin T, Sun Z et al (2017) Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol 35:154–163. https://doi.org/10.1038/nbt.3777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Schuele B, Zafar F, Shin S, Michael D, Nguyen A, Flierl A, et al. (2016) High-efficiency differentiation into functional dopaminergic neurons from Parkinson’s patients-derived induced pluripotent stem cells. F1000Research. 5. https://doi.org/10.7490/F1000RESEARCH.1112457.1

  49. Jacobs K, Zambelli F, Mertzanidou A, Smolders I, Geens M, Nguyen HT et al (2016) Higher-density culture in human embryonic stem cells results in DNA damage and genome instability. Stem Cell Rep 6:330–341. https://doi.org/10.1016/j.stemcr.2016.01.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

LVP is grateful for grant support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP -CEPID 13/08135-2), Conselho Nacional de Desenvolvimento Científico e Tecnológico/Departamento de Ciência e Tecnologia do Ministério da Saúde (CNPq/MS/DECIT- 24/2014), Banco Nacional de Desenvolvimento Econômico e Social (BNDES), Financiadora de Estudos e Projetos (FINEP), and 2010 Gaucher Generation grant program by Genzyme Corporation. HU is grateful for grant support by FAPESP (Project No. 2012/50880-4) and CNPq (Project No. 306429/2013-6). MFRF was awarded with research grants from FAPESP (2013/08028-1and 2015/18961-2) and CNPq (471999/2013-0 and 401670/2013-9). FTA (Project No. 2014/25487-3) is grateful for a doctorate fellowship granted by FAPESP. ATSS (Project No. 163310/2014-9), AOG (Project No. 141979/2014-3), and MCBG (Project No. 870458/1997-3) are grateful for a doctorate fellowship granted by CNPq. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001. Special thanks to Mark Tomishima and Faria Zafar for online advising during the establishment of this protocol.  

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lygia Veiga Pereira or Henning Ulrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tofoli, F.A. et al. (2019). Midbrain Dopaminergic Neurons Differentiated from Human-Induced Pluripotent Stem Cells. In: Daadi, M. (eds) Neural Stem Cells. Methods in Molecular Biology, vol 1919. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9007-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9007-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9005-4

  • Online ISBN: 978-1-4939-9007-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics