Upscaling Issues in Ecohydrological Observations

  • H. VereeckenEmail author
  • Y. Pachepsky
  • H. Bogena
  • C. Montzka
Living reference work entry

Later version available View entry history

Part of the Ecohydrology book series (ECOH)


Ecohydrological processes are strongly controlled by complex interactions between the subsurface or vadose zone, the vegetation, and the atmosphere. Upscaling of ecohydrological processes requires an understanding of the fundamental processes and states controlling water-related fluxes in vegetation and soils as well as the characterization of the inherent spatial variability occurring in these systems from the local to the catchment scale and beyond. In this chapter we address upscaling of soil water processes and hydraulic properties in the vadose zone, the upscaling of soil water-plant processes, the use of data assimilation techniques to estimate ecohydrologically relevant parameters, and the use of novel sensing techniques and observational platforms. The integration of novel upscaling approaches and novel sensing techniques will provide a unique opportunity to improve our understanding of ecohydrological processes.


Evapotranspiration Ecohydrology Scaling approaches Pedotransfer functions 


  1. R.G. Allen, L.S. Pereira, D. Raes, M. Smith, Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56, FAO, Rome 300, D05109 (1998)Google Scholar
  2. C. Alvarez-Garreton, D. Ryu, A.W. Western, W.T. Crow, D.E. Robertson, The impacts of assimilating satellite soil moisture into a rainfall-runoff model in a semi-arid catchment. J. Hydrol. 519, 2763 (2014)CrossRefGoogle Scholar
  3. H. Asbjornsen et al., Ecohydrological advances and applications in plant-water relations research: a review. J. Plant. Ecol. 4, 3 (2011)CrossRefGoogle Scholar
  4. E. Babaeian, M. Homaee, C. Montzka, H. Vereecken, A.A. Norouzi, Towards retrieving soil hydraulic properties by hyperspectral remote sensing. Vadose Zone J. 14(3), (2015).
  5. E. Babaeian, M. Homaee, C. Montzka, H. Vereecken, A.A. Norouzi, M.T. van Genuchten, Soil moisture prediction of bare soil profiles using diffuse spectral reflectance information and vadose zone flow modeling. Remote Sens. Environ. 187, 218 (2016)CrossRefGoogle Scholar
  6. M.J. Best et al., The joint UK land environment simulator (JULES), model description – part 1: energy and water fluxes. Geosci. Model Dev. 4, 677 (2011)CrossRefGoogle Scholar
  7. T.W. Biggs, G.P. Petropoulos, N.M. Velpuri, M. Marshall, E.P. Glenn, P. Nagler, A. Messina, Remote sensing of energy fluxes and soil moisture content, G.P. Petropoulos (Taylor and Francis, New York, 2013), p. 59Google Scholar
  8. H.R. Bogena, M. Herbst, J.A. Huisman, U. Rosenbaum, A. Weuthen, H. Vereecken, Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J. 9, 1 (2010)CrossRefGoogle Scholar
  9. F. Castaldi, R. Casa, A. Castrignano, S. Pascucci, A. Palombo, S. Pignatti, Estimation of soil properties at the field scale from satellite data: a comparison between spatial and non-spatial techniques. Eur. J. Soil Sci. 65, 842 (2014)CrossRefGoogle Scholar
  10. F. Castaldi, A. Palombo, S. Pascucci, S. Pignatti, F. Santini, R. Casa, Reducing the influence of soil moisture on the estimation of clay from hyperspectral data: a case study using simulated PRISMA data. Remote Sens-Basel 7, 15561 (2015)CrossRefGoogle Scholar
  11. B.J. Choudhury, N.U. Ahmed, S.B. Idso, R.J. Reginato, C.S.T. Daughtry, Relations between evaporation coefficients and vegetation indexes studied by model simulations. Remote Sens. Environ. 50(1) (1994)Google Scholar
  12. A.M.J. Coenders-Gerrits, R.J. van der Ent, T.A. Bogaard, L. Wang-Erlandsson, M. Hrachowitz, H.H.G. Savenije, Uncertainties in transpiration estimates. Nature 506, E1 (2014)CrossRefGoogle Scholar
  13. Y.J. Dai et al., The common land model. B. Am. Meteorol. Soc. 84, 1013 (2003)CrossRefGoogle Scholar
  14. D. Eamus, S. Zolfaghar, R. Villalobos-Vega, J. Cleverly, A. Huete, Groundwater-dependent ecosystems: recent insights from satellite and field-based studies. Hydrol. Earth. Syst. Sci. 19, 4229 (2015)CrossRefGoogle Scholar
  15. D. Erdal, I. Neuweiler, U. Wollschlager, Using a bias aware EnKF to account for unresolved structure in an unsaturated zone model. Water Resour. Res. 50, 132 (2014)CrossRefGoogle Scholar
  16. J. Evaristo, S. Jasechko, J.J. McDonnell, Global separation of plant transpiration from groundwater and streamflow. Nature 525, 91 (2015)CrossRefGoogle Scholar
  17. G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res. Oceans 99, 10143 (1994)CrossRefGoogle Scholar
  18. G. Evensen, The ensemble Kalman filter for combined state and parameter estimation Monte Carlo techniques for data assimilation in large systems. IEEE Control. Syst. Mag. 29, 83 (2009)CrossRefGoogle Scholar
  19. D.R. Fuka, A.S. Collick, P.J.A. Kleinman, D.A. Auerbach, R D. Harmel, Z M. Easton, Improving the spatial representation of soil properties and hydrology using topographically derived initialization processes in the SWAT model. Hydrol. Process., n/a (2016)Google Scholar
  20. N.J. Gordon, D.J. Salmond, A.F.M. Smith, Novel-approach to nonlinear non-Gaussian Bayesian state estimation. IEEE Proc. F Radar Signal Process. 140, 107 (1993)CrossRefGoogle Scholar
  21. J.P. Guerschman, A.I.J.M. Van Dijk, G. Mattersdorf, J. Beringer, L.B. Hutley, R. Leuning, R.C. Pipunic, B.S. Sherman, Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia. J. Hydrol. 369, 107 (2009)CrossRefGoogle Scholar
  22. A.J. Guswa, M.A. Celia, I. Rodriguez-Iturbe, Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resour. Res. 38, 1166 (2002)Google Scholar
  23. E.D. Gutmann, E.E. Small, A comparison of land surface model soil hydraulic properties estimated by inverse modeling and pedotransfer functions. Water Resour. Res. 43 (2007.) W05418Google Scholar
  24. J.D. Haskett, Y.A. Pachepsky, B. Acock, Use of the beta-distribution for parameterizing variability of soil properties at the regional level for crop yield estimation. Agric. Syst. 48, 73 (1995)CrossRefGoogle Scholar
  25. C. Homer et al., Completion of the 2011 national land cover database for the conterminous United States – representing a decade of land cover change information. Photogramm. Eng. Remote. Sens. 81, 345 (2015)Google Scholar
  26. M.N. Inagaki, T. Fukatsu, M. Hirafuji, M.M. Nachit, Monitoring soil moisture under wheat growth through a wireless sensor network in dry conditions. J. Environ Sci. Eng. 5, 428 (2011)Google Scholar
  27. R.B. Jana, B.P. Mohanty, Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation. J. Hydrol. 399, 201 (2011)CrossRefGoogle Scholar
  28. R.B. Jana, B.P. Mohanty, Z. Sheng, Upscaling soil hydraulic parameters in the picacho mountain region using bayesian neural networks. T Asabe 55, 463 (2012)CrossRefGoogle Scholar
  29. S. Jasechko, J. Kirchner, J. Welker and J.J. McDonnell Substantial Portion of global river discharge less than 3 months old, Nat. Geosci. 9, 9, 126 (2016)Google Scholar
  30. R. Jin et al., A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River basin, China. Ieee Geosci Remote S 11, 2015 (2014)CrossRefGoogle Scholar
  31. A. Lausch, S. Zacharias, C. Dierke, M. Pause, I. Kuhn, D. Doktor, P. Dietrich, U. Werban, Analysis of vegetation and soil patterns using hyperspectral remote sensing, EMI, and gamma-ray measurements. Vadose Zone J. 12(4), (2013).
  32. M.R. Levi, M.G. Schaap, C. Rasmussen, Application of spatial pedotransfer functions to understand soil modulation of vegetation response to climate. Vadose Zone J. 14(9), (2015).
  33. C. Li, L. Ren, Estimation of unsaturated soil hydraulic parameters using the ensemble Kalman filter. Vadose Zone J. 10, 1205 (2011)CrossRefGoogle Scholar
  34. B. Livneh, R. Kumar, L. Samaniego, Influence of soil textural properties on hydrologic fluxes in the Mississippi river basin. Hydrol. Process. 29, 4638 (2015)CrossRefGoogle Scholar
  35. H.W. Loescher et al., Enhancing water cycle measurements for future hydrologic research. B. Am. Meteorol. Soc. 88, 669 (2007)CrossRefGoogle Scholar
  36. M. Marshall, P. Thenkabail, T. Biggs, K. Post, Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation). Agric. For. Meteorol. 218, 122 (2016)CrossRefGoogle Scholar
  37. S.A. Mathias, T.H. Skaggs, S.A. Quinn, S.N.C. Egan, L.E. Finch, C.D. Oldham, A soil moisture accounting-procedure with a Richards’ equation-based soil texture-dependent parameterization. Water Resour. Res. 51, 506 (2015)CrossRefGoogle Scholar
  38. E.M. Middleton, S.G. Ungar, D.J. Mandl, L. Ong, S.W. Frye, P.E. Campbell, D.R. Landis, J.P. Young, N.H. Pollack, The earth observing one (EO-1) satellite mission: over a decade in space. IEEE J-Stars 6, 243 (2013)Google Scholar
  39. E.E. Miller, R.D. Miller, Physical theory for capillary flow phenomena. J. Appl. Phys. 27, 324 (1956)CrossRefGoogle Scholar
  40. D.A. Miller, R.A. White, A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact. 2, 1 (1998)CrossRefGoogle Scholar
  41. C. Montzka, V.R.N. Pauwels, H.J.H. Franssen, X.J. Han, H. Vereecken, Multivariate and multiscale data assimilation in terrestrial systems: a review. Sensors-Basel 12, 16291 (2012)CrossRefGoogle Scholar
  42. C. Montzka, M. Herbst, L. Weihermüller, A. Verhoef, H. Vereecken, A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves. Earth Syst. Sci. Data Discuss. 2017, 1 (2017)CrossRefGoogle Scholar
  43. M.Z. Moreira, L.D.L. Sternberg, L.A. Martinelli, R.L. Victoria, E.M. Barbosa, L.C.M. Bonates, D.C. Nepstad, Contribution of transpiration to forest ambient vapour based on isotopic measurements. Glob. Chang. Biol. 3, 439 (1997)CrossRefGoogle Scholar
  44. P.L. Nagler, E.P. Glenn, U. Nguyen, R.L. Scott, T. Doody, Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS enhanced vegetation index. Remote Sens-Basel 5, 3849 (2013)CrossRefGoogle Scholar
  45. A. Nemes, Y.A. Pachepsky, D.J. Timlin, Toward improving global estimates of field soil water capacity. Soil Sci. Soc. Am. J. 75, 807 (2011)CrossRefGoogle Scholar
  46. W. Ouerghemmi, C. Gomez, S. Naceur, P. Lagacherie, Semi-blind source separation for the estimation of the clay content over semi-vegetated areas using VNIR/SWIR hyperspectral airborne data. Remote Sens. Environ. 181, 251 (2016)CrossRefGoogle Scholar
  47. Y. Pachepsky, R.L. Hill, Scale and scaling in soils. Geoderma 287, 4-30 (2017)Google Scholar
  48. Y. Pachepsky, W.J. Rawls, Development of Pedotransfer Functions in Soil Hydrology, vol 30 (Elsevier, Amsterdam, 2004)Google Scholar
  49. Y. Pachepsky, A. Guber, D. Jacques, J. Simunek, M.T. Van Genuchten, T. Nicholson, R. Cady, Information content and complexity of simulated soil water fluxes. Geoderma 134, 253 (2006)CrossRefGoogle Scholar
  50. G. Petropoulos, T.N. Carlson, M.J. Wooster, S. Islam, A review of T-s/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture. Prog. Phys. Geogr. 33, 224 (2009)CrossRefGoogle Scholar
  51. L. Poggio, A. Gimona, I. Brown, M. Castellazzi, Soil available water capacity interpolation and spatial uncertainty modelling at multiple geographical extents. Geoderma 160, 175 (2010)CrossRefGoogle Scholar
  52. A. Porporato, P. D’Odorico, F. Laio, L. Ridolfi, I. Rodriguez-Iturbe, Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 25, 1335 (2002.) Pii s0309-1708(02)00058-1CrossRefGoogle Scholar
  53. Y.H. Qu, Y.Q. Zhu, W.C. Han, J.D. Wang, M.G. Ma, Crop leaf area index observations with a wireless sensor network and its potential for validating remote sensing products. IEEE J-Stars 7, 431 (2014)Google Scholar
  54. W. Qu, H.R. Bogena, J.A. Huisman, J. Vanderborght, M. Schuh, E. Priesack, H. Vereecken, Predicting subgrid variability of soil water content from basic soil information. Geophys. Res. Lett. 42, 789 (2015a)CrossRefGoogle Scholar
  55. Y.H. Qu, W.C. Han, M.G. Ma, Retrieval of a temporal high-resolution leaf area index (LAI) by combining MODIS LAI and ASTER reflectance data. Remote Sens-Basel 7, 195 (2015b)CrossRefGoogle Scholar
  56. R.H. Reichle, Data assimilation methods in the earth sciences. Adv. Water Resour. 31, 1411 (2008)CrossRefGoogle Scholar
  57. A.A. Romanowicz, M. Vanclooster, M. Rounsevell, I. La Junesse, Sensitivity of the SWAT model to the soil and land use data parametrisation: a case study in the Thyle catchment, Belgium. Ecol. Model. 187, 27 (2005)CrossRefGoogle Scholar
  58. Y. Rothfuss, P. Biron, I. Braud, L. Canale, J.L. Durand, J.P. Gaudet, P. Richard, M. Vauclin, T. Bariac, Partitioning evapotranspiration fluxes into soil evaporation and plant transpiration using water stable isotopes under controlled conditions. Hydrol. Process. 24, 3177 (2010)CrossRefGoogle Scholar
  59. S. Rudolph et al., Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements. Geoderma 241, 262 (2015)CrossRefGoogle Scholar
  60. W. Shangguan, Y.J. Dai, Q.Y. Duan, B.Y. Liu, H. Yuan, A global soil data set for earth system modeling. J. Adv. Model. Earth Syst 6, 249 (2014)CrossRefGoogle Scholar
  61. L.S. Song et al., Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. J. Hydrol. 540, 574 (2016)CrossRefGoogle Scholar
  62. M.P. Stockinger, A. Lucke, J.J. McDonnell, B. Diekkruger, H. Vereecken, H.R. Bogena, Interception effects on stable isotope driven streamwater transit time estimates. Geophys. Res. Lett. 42, 5299 (2015)CrossRefGoogle Scholar
  63. Z. Sun, M. Gebremichael, J. Ardo, A. Nickless, B. Caquet, L. Merboldh, W. Kutschi, Estimation of daily evapotranspiration over Africa using MODIS/Terra and SEVIRI/MSG data. Atmos. Res. 112, 35 (2012)CrossRefGoogle Scholar
  64. T. Svoray, S. Assouline, G. Katul, Introduction to a special section on ecohydrology of semiarid environments: confronting mathematical models with ecosystem complexity. Water Resour. Res. 51, 8677 (2015)CrossRefGoogle Scholar
  65. P.M. Tillotson, D.R. Nielsen, Scale factors in soil science. Soil Sci. Soc. Am. J. 48, 953 (1984)CrossRefGoogle Scholar
  66. S.L. Ustin, D. Riano, E.R. Hunt, Estimating canopy water content from spectroscopy. Israel J. Plant Sci. 60, 9 (2012)CrossRefGoogle Scholar
  67. E. Vaudour, J.M. Gilliot, L. Bel, J. Lefevre, K. Chehdi, Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra. Int. J. Appl. Earth Obs. 49, 24 (2016)CrossRefGoogle Scholar
  68. H. Vereecken, T. Kamai, T. Harter, R. Kasteel, J. Hopmans, J. Vanderborght, Explaining soil moisture variability as a function of mean soil moisture: a stochastic unsaturated flow perspective. Geophys. Res. Lett. 34 (22) L22402 (2007)Google Scholar
  69. H. Vereecken, J.A. Huisman, H. Bogena, J. Vanderborght, J.A. Vrugt, J.W. Hopmans, On the value of soil moisture measurements in vadose zone hydrology: a review. Water Resour. Res. 44 W00D06 (2008)Google Scholar
  70. H. Vereecken et al., On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol. 516, 76 (2014)CrossRefGoogle Scholar
  71. J.A. Vrugt, M.T. van Wijk, J.W. Hopmans, J. Simunek, One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resour. Res. 37, 2457 (2001)CrossRefGoogle Scholar
  72. J.A. Vrugt, P.H. Stauffer, T. Wohling, B.A. Robinson, V.V. Vesselinov, Inverse modeling of subsurface flow and transport properties: a review with new developments. Vadose Zone J. 7, 843 (2008)CrossRefGoogle Scholar
  73. Z.M. Wan, K. Zhang, X.W. Xue, Z. Hong, Y. Hong, J.J. Gourley, Water balance-based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States. Water Resour. Res. 51, 6485 (2015)CrossRefGoogle Scholar
  74. X. Wen, B. Yang, X. Sun, X. Lee, Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland. Agric. For. Meteorol. 230–231, 89 (2016)CrossRefGoogle Scholar
  75. J.H.M. Wosten, Y.A. Pachepsky, W.J. Rawls, Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251, 123 (2001)CrossRefGoogle Scholar
  76. J.J. Wu, Z.Y. Li, Z.H. Gao, B.Y. Wang, L.N. Bai, B. Sun, C.L. Li, X.Y. Ding, Degraded land detection by soil particle composition derived from multispectral remote sensing data in the Otindag Sandy Lands of China. Geoderma 241, 97 (2015)CrossRefGoogle Scholar
  77. T.R. Xu, S.M. Liu, L. Xu, Y.J. Chen, Z.Z. Jia, Z.W. Xu, J. Nielson, Temporal upscaling and reconstruction of thermal remotely sensed instantaneous evapotranspiration. Remote Sens-Basel 7, 3400 (2015a)CrossRefGoogle Scholar
  78. T.R. Xu, S.M. Liu, Z.W. Xu, S.L. Liang, L. Xu, A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature. Sci. China Earth Sci. 58, 211 (2015b)CrossRefGoogle Scholar
  79. Y.S. Zhai, J.A. Thomasson, J.E. Boggess, R.X. Sui, Soil texture classification with artificial neural networks operating on remote sensing data. Comput. Electron. Agr. 54, 53 (2006)CrossRefGoogle Scholar
  80. D.X. Zhang, T.C. Wallstrom, C.L. Winter, Stochastic analysis of steady-state unsaturated flow in heterogeneous media: comparison of the Brooks-Corey and Gardner-Russo models. Water Resour. Res. 34, 1437 (1998)CrossRefGoogle Scholar
  81. K. Zhang, J.S. Kimball, S.W. Running, A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip. Rev. Water 3, 834 (2016)CrossRefGoogle Scholar
  82. H. Zia, N.R. Harris, G.V. Merrett, M. Rivers, N. Coles, The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks. Comput. Electron Agric. 96, 126 (2013)CrossRefGoogle Scholar
  83. H. Vereecken, A. Schnepf, J.W. Hopmans, M. Javaux, D. Or, T. Roose, J. Vanderborght, M.H. Young, W. Amelung, M. Aitkenhead, S.D. Allison, S. Assouline, P. Baveye, M. Berli, N. Brüggemann, P. Finke, M. Flury, T. Gaiser, G. Govers, T. Ghezzehei, P. Hallett, H.J. Hendricks Franssen, J. Heppell, R. Horn, J.A. Huisman, D. Jacques, F. Jonard, S. Kollet, F. Lafolie, K. Lamorski, D. Leitner, A. McBratney, B. Minasny, C. Montzka, W. Nowak, Y. Pachepsky, J. Padarian, N. Romano, K. Roth, Y. Rothfuss, E.C. Rowe, A. Schwen, J. Šimůnek, A. Tiktak, J. Van Dam, S.E.A.T.M. van der Zee, H.J. Vogel, J.A. Vrugt, T. Wöhling, I.M. Young, Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 15 (5), (2016).

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2018

Authors and Affiliations

  • H. Vereecken
    • 1
    Email author
  • Y. Pachepsky
    • 2
  • H. Bogena
    • 1
  • C. Montzka
    • 1
  1. 1.Agrosphere Institute IBG-3Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Environmental Microbial and Food Safety LaboratoryUSDA ARS Beltsville Agricultural Research CenterBeltsvilleUSA

Personalised recommendations