Skip to main content

Animal Breeding Methods and Sustainability

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology
  • 31 Accesses

Definition of the Subject

After domestication, animals were selected in different environments and for different traits leading to the modern breeds. Long before the appearance of the science called now as “Genetics,” animal breeding had been practiced by humans following intuitive criteria, less efficient than the scientific ones, but criteria that had provided success along many generations of selection [1]. The lack of a theory explaining inheritance slowed down animal breeding for many years, but with the rediscovery of Mendel’s rules at the beginning of the twentieth century and the development of quantitative genetics in the 1920s and 1930s, animal breeding had the tools needed for its development. Animal breeding methods were developed in the 1930s and 1940s, and the first animal breeding companies and cooperatives started in using scientific methods for animal selection [2]. The development of artificial insemination in cattle in the 1940s and frozen semen in the 1950s led to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  1. Wood J, Orel V (2001) Genetic prehistory in selective breeding. Oxford University Press, Oxford

    Google Scholar 

  2. Johansson I, Rendel J (1972) Genetics and animal breeding. Oliver & Boyd, Edinburgh

    Google Scholar 

  3. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    Article  CAS  Google Scholar 

  4. Gandini G, Oldenbroek K (2007) Strategies for moving from conservation to utilisation. In: Oldenbroeck K (ed) Utilisation and conservation of farm animal genetic resources. Wageningen Academic Publishers, Wageningen, pp 55–74

    Google Scholar 

  5. Darwin C (1859/1964) On the origin of species (a facsimile of the first edition). Harvard University Press, Cambridge, MA

    Google Scholar 

  6. Trut LN (1999) Early canid domestication: the farm-fox experiment. Am Sci 87:160–169

    Article  Google Scholar 

  7. Trut LN, Plyusnina IZ, Oskina IN (2004) An experiment on fox domestication and debatable issues of evolution of the dog. Russ J Genet 40:644–655

    Article  CAS  Google Scholar 

  8. Achilli A, Olivieri A, Pellecchia M, Uboldi C, Colli L, Al-Zahery N, Accetturo M, Pala M, Kashani BH, Perego UA, Battaglia V, Fornarino S, Kalamati J, Houshmand M, Negrini R, Semino O, Richards M, Macaulay V, Ferretti L, Bandelt HJ, Ajmone-Marsan P, Torroni A (2008) Mitochondrial genomes of extinct aurochs survive in domestic cattle. Curr Biol 18:R157–R158

    Article  CAS  Google Scholar 

  9. Russell N (1986) Like enged’ring like. Cambridge University Press, Cambridge

    Google Scholar 

  10. Sageret A (1826) Considérations sur la production des hybrides des variantes et des variétés en général et sur celles de la famille des Cucurbitacées en particulier. Ann Sci Nat 8:294–314

    Google Scholar 

  11. Mendel JG (1866) Versuche über Plflanzenhybriden Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr, 1865 Abhandlungen: 3–47. English translation at http://www.mendelweb.org/Mendel.html

  12. Provine WB (2001) The origins of theoretical population genetics. The University of Chicago Press, Chicago

    Book  Google Scholar 

  13. Fisher RA (1918) The correlations between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb 52:399–433

    Article  Google Scholar 

  14. Lush JL (1937) Animal breeding plans. Collegiate Press, Ames

    Google Scholar 

  15. Smith F (1937) A discriminant function for plant selection. Ann Eugenics 7:240–250

    Article  Google Scholar 

  16. Hazel LN (1943) The genetic bases for constructing selection indexes. Genetics 28:476–490

    Article  CAS  Google Scholar 

  17. Foote RH (2002) The history of artificial insemination: selected notes and notables. J Anim Sci 80:1–10

    Article  Google Scholar 

  18. Henderson CR (1964) Selection index and expected genetic advance. In: Hanson WD, Robison HF (eds) Statistical genetics and plant breeding. NAS, NRC, Washington, pp 141–163

    Google Scholar 

  19. Henderson CR (1976) A rapid method for computing the inverse of a relationship matrix. J Dairy Sci 58:1727–1730

    Article  Google Scholar 

  20. Patterson HD, Thompson R (1971) Recovery of interblock information when block sizes are unequal. Biometrika 58:545–554

    Article  Google Scholar 

  21. Blasco A (2001) The Bayesian controversy in animal breeding. J Anim Sci 79:2023–2046

    Article  CAS  Google Scholar 

  22. Gianola D, Fernando RL (1986) Bayesian methods in animal breeding theory. J Anim Sci 63:217–244

    Article  Google Scholar 

  23. Blasco A (2017) Bayesian data analysis for animal scientists. Springer

    Book  Google Scholar 

  24. Blasco A (2008) The role of genetic engineering in livestock production. Livest Sci 113:191–201

    Article  Google Scholar 

  25. Dekkers JCM (2004) Commercial application of marker and gene assisted selection in livestock: strategies and lessons. J Anim Sci 82:E313–E318

    Google Scholar 

  26. Meuwissen THE, Hayes BH, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  Google Scholar 

  27. Ibañez N, Blasco A (2011) Modifying growth curve parameters by multitrait genomic selection. J Anim Sci 89:661–668

    Article  Google Scholar 

  28. Porter E (ed) (2002) Mason’s world dictionary of livestock breeds, types and varieties. CABI Publication, Wallingford

    Google Scholar 

  29. Rodero E, Herrera M (2000) El concepto de raza. Un enfoque epistemológico. Arch Zootec 49:5–16

    Google Scholar 

  30. Hall SJG (2004) Livestock biodiversity. Blackwell, Oxford

    Book  Google Scholar 

  31. Woolliams J, Toro MA (2007) What is genetic diversity? In: Oldenbroeck K (ed) Utilisation and conservation of farm animal genetic resources. Wageningen Academic Publishers, Wageningen, pp 55–74

    Google Scholar 

  32. Falconer D, Mackay TFC (1996) Introduction to quantitative genetics. Longman, Edinburgh

    Google Scholar 

  33. Baselga (2004) Genetic improvement of meat rabbits. Programmes and diffusion. In: Proceedings of the 8th world rabbit congress, Puebla, Mexico, pp 1–13, 7–10 September. http://world-rabbit-science.com/WRSA-Proceedings/Congress-2004-Puebla/Puebla-2004-a.htm#Genetics

  34. Oldenbroeck K (ed) (2007) Utilisation and conservation of farm animal genetic resources. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  35. Blasco A (2008) Breeds in danger of extinction and biodiversity. Rev Bras Zootec 37:101–109

    Article  Google Scholar 

  36. Madalena FE (2008) How sustainable are the breeding programs of the global main stream dairy breeds? The Latin American situation. Livest Res Rural Dev 20:19. http://www.lrrd.org/lrrd20/2/mada20019.htm

    Google Scholar 

  37. Hansen LB (2006) Monitoring the worldwide genetic supply for dairy cattle with emphasis on managing crossbreeding and inbreeding. In: 8th world congress on genetics applied to livestock production, Belo Horizonte, Brazil, 13–18 August 2006. http://www.wcgalp8.org.br/wcgalp8/articles/paper/1_484-1695.pdf

  38. International Chicken Polymorphism Map Consortium (2004) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717–722

    Article  Google Scholar 

  39. Bennewitz J, Eding H, Ruane J, Simianer H (2007) Selection of breeds for conservation. In: Oldenbroeck K (ed) Utilisation and conservation of farm animal genetic resources. Wageningen Academic Publishers, Wageningen, pp 131–146

    Google Scholar 

  40. World Commission on Environment and Development (1987) Our common future. Oxford University Press, Oxford

    Google Scholar 

  41. Williams AG, Audsley E, Sandars DL (2006) Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Main Report. Defra Research Project IS0205. Bedford: Cranfield University and Defra. http://randd.defra.gov.uk/Document.aspx?Document=IS0205_3959_FRP.doc

  42. Webster J (2005) Animal welfare: limping towards Eden. Blackwell, Oxford

    Book  Google Scholar 

  43. Gibson JP, Steane DE, Plastow GS, Warkup C (2006) Meeting the needs of rich and poor: the needs, opportunities and trends in pig genetic improvement. In: 8th world congress on genetics applied to livestock production, Belo Horizonte, Brazil, 13–18 August 2006. http://www.wcgalp8.org.br/wcgalp8/articles/paper/6_1040-2147.pdf

  44. Taylor CS (1985) Use of genetic size-scaling in evaluation of animal growth. J Anim Sci 61:118–143

    Article  Google Scholar 

  45. Beavers L, Van Doormal B (2007). Genetic gain before and after genomics. Canadian Dairy Network December 15, 2019: 1–3.

    Google Scholar 

  46. Bichard M (1977) Economic efficiency of pig breeding schemes: a breeding company view. Livest Prod Sci 4:245–254

    Article  Google Scholar 

  47. Hunton P (1990) Industrial breeding and selection. In: Crawford RD (ed) Poultry breeding and genetics. Elsevier, Amsterdam

    Google Scholar 

  48. Bulmer G (1980) The mathematical theory of quantitative genetics. Oxford University Press, Oxford

    Google Scholar 

  49. Knap PW, Wang L (2006) Robustness in pigs and what we can learn from other species. In: 8th world congress on genetics applied to livestock production, Belo Horizonte, Brazil, 13–18 August 2006. http://www.wcgalp8.org.br/wcgalp8/articles/paper/6_203-1825.pdf

  50. Blasco (1995) Los pesos económicos en mejora genética animal. ITEA 91A:59–79

    Google Scholar 

  51. Weller I (1994) Economic aspect of animal breeding. Chapman & Hall, London

    Google Scholar 

  52. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with metallothione in growth hormone fusion genes. Nature 300:611–615

    Article  CAS  Google Scholar 

  53. Fournet F, Elsen JM, Barbieri ME, Manfredi E (1997) Effect of including major gene information in mass selection: a stochastic simulation in a small population. Genet Sel Evol 29:35–56

    Article  Google Scholar 

  54. Villanueva B, Pong-Wong R, Grundy B, Wooliams JA (1999) Potential benefit from using an identified major gene in BLUP evaluation with truncation and optimal selection. Genet Sel Evol 31:115–133

    Article  Google Scholar 

  55. Visscher PM, Haley CS (1995) Utilizing genetic markers in pig breeding programmes. Anim Breedg Abstr 63:1–8

    Google Scholar 

  56. Yu L, Batara J, Lu B (2016) Application of genome editing technology to MicroRNA research in mammalians. In: Korman MSD (ed) Modern tools for genetic engineering. Intech Open, London

    Google Scholar 

  57. Tait-Burkard C, Doeschi-Wilson A, McGrew MJ, Archibald AL, Sang HM, Houston RD, Whitelaw CB, Watson M (2018) Livestock 2.0 genome editing for fitter, healthier, and more productive farmed animals. Genome Biol 19:204

    Article  CAS  Google Scholar 

  58. Gama LT, Smith CS, Gibson JP (1992) Transgene effects, introgression strategies and testing schemes in pigs. Anim Prod 54:427–440

    Google Scholar 

  59. Blasco A, Pena R (2018) Current status of genomic maps, genomic selection/GBV in livestock. In: Niemann H, Wrenzycki C (eds) Animal biotechnology. Springer

    Google Scholar 

  60. Gianola D, De los Campos G, Hill WG, Manfredi E, Fernando R (2009) Additive genetic variability and the Bayesian alphabet. Genetics 183:347–363

    Article  Google Scholar 

  61. Gianola D, De los Campos G (2008) Inferring genetic values for quantitative traits non-parametrically. Genet Res 90:525–540

    Article  CAS  Google Scholar 

  62. González-Recio O, Gianola D, Rosa GJM, Weigel KA, Kranis A (2009) Genome-assisted prediction of a quantitative trait measured in parents and progeny: application to food conversion rate in chickens. Genet Sel Evol 41:3. http://www.gsejournal.org/content/41/1/3

    Article  Google Scholar 

  63. González-Recio O, Gianola D, Long N, Weigel KA, Rosa GJM, Avendaño S (2008) Nonparametric methods for incorporating genomic information into genetic evaluations: an application to mortality in broilers. Genetics 178:2305–2313

    Article  Google Scholar 

  64. König S, Simianer H, Willam A (2009) Economic evaluation of genomic breeding programs. J Dairy Sci 92:382–391

    Article  Google Scholar 

  65. Legarra A, Aguilar I, Misztal I (2009) A relationship matrix including full pedigree and genomic information. J Dairy Sci 92:4656–4663

    Article  CAS  Google Scholar 

  66. Souza LH, Carvalheiro R, Neves H, Mulder HA (2919) Genetics and genomics of uniformity and resilience in livestock and aquaculture species: a review. J Anim Breed Genet 137:263–280

    Google Scholar 

  67. Robertson A (1960) A theory of limits in artificial selection. Proc R Soc B 153:243–249

    Google Scholar 

  68. Robertson FW (1955) Selection response and the properties of genetic variation. Cold Spring Harb Symp Quant Biol 20:166–177

    Article  CAS  Google Scholar 

  69. Roberts RC (1966) The limits to artificial selection for body weight in the mouse. II The genetic nature of the limits. Genet Res 8:361–375

    Article  CAS  Google Scholar 

  70. Hill WG (2008) Estimation, effectiveness and opportunities of long term genetic improvement in animals and maize. Lohmann Inf 43:3–20. http://www.lohmann-information.com/content/l_i_43_artikel1.pdf

    Google Scholar 

  71. Hill WG, Bünger L (2004) Inferences on the genetics of quantitative traits from long-term selection in laboratory and farm animals. Plant Breed Rev 24:169–210

    Google Scholar 

  72. Van Tassell CP, Wiggans GR, Norman HD (1999) Method R estimates of heritability for milk, fat, and protein yields of United States dairy cattle. J Dairy Sci 82:2231–2237

    Article  Google Scholar 

  73. Havenstein GB, Ferket PR, Qureshi MA (2003) Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult Sci 82:1509–1518

    Article  CAS  Google Scholar 

  74. Havenstein GB (2006) Performance changes in poultry and livestock following 50 years of genetic selection. Lohmann Inf 41:30–37. http://www.lohmanninformation.com/content/l_i_41_2006-12_artikel5.pdf

    Google Scholar 

  75. Hill WG (1982) Predictions of response to artificial selection from new mutations. Genet Res 40:255–278

    Article  Google Scholar 

  76. Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4(2):e1000008. http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1000008

    Article  Google Scholar 

  77. Hill WG (1982) Rates of change in quantitative traits from fixation of new mutations. Proc Natl Acad Sci U S A 79:142–145

    Article  CAS  Google Scholar 

  78. López M, López-Fanjul C (1993) Spontaneous mutation for a quantitative trait in Drosophila melanogaster. 1. Response to artificial selection. Genet Res 61:107–116

    Article  Google Scholar 

  79. Pavlidis HO, Balog JM, Stamps LK, Hughes JD, Huff WE, Anthony NB (2007) Divergent selection for ascites incidence in chickens. Poult Sci 86:2517–2529

    Article  CAS  Google Scholar 

  80. Rauw WM, Kanis E, Noordhuizen-Stassen EN, Grommers FJ (1998) Undesirable side effects of selection for high production efficiency in farm animals: a review. Livest Prod Sci 56:15–33

    Article  Google Scholar 

Books and Reviews

  • Blasco A (2021) Mejora genética animal. Síntesis, Madrid

    Google Scholar 

  • Caballero A (2020) Quantitative genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Nicholas FR (2010) Introduction to veterinary genetics. WileyBlackwell, Oxford

    Google Scholar 

  • Willis MB (1998) Dalton’s introduction to practical animal breeding. Blackwell, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustin Blasco .

Editor information

Editors and Affiliations

Section Editor information

Glossary

Breed

A population of animals with common morphological characteristics that is recognized as a breed by the administration, by a breeders’ association, or by other groups of people.

Best Linear Unbiased Prediction (BLUP)

It is the most common statistical method used in breeding evaluations. A version of the method including genetic markers is known as G-BLUP.

Quantitative Trait Locus (QTL)

A gene having influence on a quantitative trait.

Markers

Fragments of the DNA molecule for which their position is known.

Genomic Selection

Statistical method used in breeding evaluations that includes phenotypic data of animals and genetic markers.

Response to Selection

Genetic progress.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Blasco, A. (2022). Animal Breeding Methods and Sustainability. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_333-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_333-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics