Skip to main content

Image-Based Modeling

  • Living reference work entry
  • First Online:
Computer Vision
  • 54 Accesses

Synonyms

Three-dimensional modeling from images

Related Concepts

Definition

Image-based modeling refers to the process of using 2D images to create 3D models. These 3D models are often represented by triangle meshes with texture maps. These models can be used for visualization or may be used for planning in robotics applications. The image-based modeling process can be roughly divided into three major steps: (1) sparse 3D reconstruction (also known as structure-from-motion), (2) dense 3D reconstruction (i.e., multi-view stereo), and (3) surface reconstruction and texture mapping.

Background

Many applications require 3D models of real objects or scenes. These applications include virtual reality (VR) or augmented reality (AR), mapping, manufacturing, robotics, etc. Thus, digitizing real objects into high-quality 3D models has been an important research topic since the early days of computer vision.

Earlier works such as [1] employ...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sato Y, Wheeler MD, Ikeuchi K (1997) Object shape and reflectance modeling from observation. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques, SIGGRAPH ’97. ACM Press/Addison-Wesley Publishing Co, New York, pp 379–387

    Chapter  Google Scholar 

  2. Debevec PE, Taylor CJ, Malik J (1996) Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques, SIGGRAPH ’96. ACM, New York, pp 11–20

    Chapter  Google Scholar 

  3. Quan L, Wang J, Tan P, Yuan L (2007) Image-based modeling by joint segmentation. Int J Comput Vis 75:135–150

    Article  Google Scholar 

  4. Fuhrmann S, Langguth F, Goesele M (2014) MVE – a multi-view reconstruction environment. Eurographics workshops on graphics and cultural heritage

    Google Scholar 

  5. Zhu S (2017) Accurate, scalable, and parallel structure-from-motion. Ph.D. Thesis, Hong Kong University of Science and Technology

    Google Scholar 

  6. Alitzure. https://www.altizure.com

  7. Pix4D. https://www.pix4d.com

  8. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, New York

    MATH  Google Scholar 

  9. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis (IJCV) 60: 91–110

    Article  Google Scholar 

  10. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speed-up robust features (SURF). Comput Vis Image Underst (CVIU) 110:346–359

    Article  Google Scholar 

  11. Nister D (2004) An efficient solution to the five-point relative pose problem. IEEE Trans Pattern Anal Mach Intell 26:756–777

    Article  Google Scholar 

  12. Quan L (1995) Invariants of six points and projective reconstruction from three uncalibrated images. IEEE Trans Pattern Anal Mach Intell 17:34–46

    Article  Google Scholar 

  13. Snavely N, Seitz SM, Szeliski R (2006) Photo tourism: exploring photo collections in 3D. ACM Trans Graph 25:835–846

    Article  Google Scholar 

  14. Wu C (2013) Towards linear time incremental structure-from-motion. In: International conference on 3D vision (3DV).

    Google Scholar 

  15. Jiang N, Cui Z, Tan P (2013) A global linear method for camera pose registration. In: IEEE international conference on computer vision (ICCV)

    Google Scholar 

  16. Wilson K, Snavely N (2014) Robust global translations with 1DSfM. In: IEEE international conference on computer vision (ICCV)

    Google Scholar 

  17. Triggs B, Mclauchlan P, Hartley R, Fitzgibbon A (2000) Bundle adjustment – a modern synthesis. In: Lecture notes in computer science, pp 298–375.

    Google Scholar 

  18. Lhuillier M, Quan L (2005) A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Trans Pattern Anal Mach Intell 27:418–433

    Article  Google Scholar 

  19. Furukawa Y, Ponce J (2010) Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal Mach Intell 32:1362–1376

    Article  Google Scholar 

  20. Seitz S, Curless B, Diebel J, Scharastein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  21. Furukawa Y, Hernandez C (2015) Multi-view stereo: a tutorial. Found Trends Comput Graph Vis 9(1–2): 1–148

    Article  Google Scholar 

  22. Schops T, Schonberger J, Galliani S, Sattler T, Schindler K, Pollefeys M, Geiger A (2017) A multi-view stereo benchmark with high resolution images and multi-camera videos. In: IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  23. Kutulakos K, Seitz S (2000) A theory of shape by space carving. Int J Comput Vis 38(3):199–218

    Article  Google Scholar 

  24. Campbell N, Vogiatzis G, Hernandez C, Cipolla R (2008) Using multiple hypotheses to improve depth-maps for multi-view stereo. In: European conference on computer vision (ECCV)

    Google Scholar 

  25. Galliani S, Lasinger K, Schindler K (2015) Massively parallel multiview stereopsis by surface normal diffusion. In: IEEE international conference on computer vision (ICCV)

    Google Scholar 

  26. Schonberger J, Zheng E, Frahm J, Pollefeys M (2016) Pixelwise view selection for unstructured multi-view stereo. In: European conference on computer vision (ECCV)

    Google Scholar 

  27. Ji M, Gall J, Zheng H, Liu Y, Fang L (2017) SurfaceNet: an end-to-end 3D neural network for multiview stereopsis. In: IEEE international conference on computer vision (ICCV)

    Google Scholar 

  28. Yao Y, Luo Z, Li S, Fang T, Quan L (2018) MVSNet: depth inference for unstructured multi-view stereo. In: European conference on computer vision (ECCV)

    Google Scholar 

  29. Kazhdan M, Bolitho M, Hoppe H (2006) Poisson surface reconstruction. In: Eurographics symposium on geometry processing (SGP)

    Google Scholar 

  30. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  Google Scholar 

  31. Zhao HK, Osher S, Fedkiw R (2001) Fast surface reconstruction using the level set method. In: Proceedings of the IEEE workshop on variational and level set methods (VLSM’01). VLSM ’01, Washington, DC. IEEE Computer Society, p 194

    Google Scholar 

  32. Faugeras OD, Keriven R (1998) Complete dense stereovision using level set methods. In: Proceedings of the 5th European conference on computer vision-volume I – volume I (ECCV ’98), London, UK. Springer, pp 379–393

    Google Scholar 

  33. Lhuillier M, Quan L (2003) Surface reconstruction by integrating 3D and 2D data of multiple views. In: Proceedings of the 9th IEEE international conference on computer vision – volume 2. ICCV ’03, Washington, DC. IEEE Computer Society, p 1313

    Google Scholar 

  34. Wei Y, Ofek E, Quan L, Shum HY (2005) Modeling hair from multiple views. ACM Trans Graph 24: 816–820

    Article  Google Scholar 

  35. Bhat KS, Twigg CD, Hodgins JK, Khosla PK, Popović Z, Seitz SM (2003) Estimating cloth simulation parameters from video. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation. SCA ’03, Aire-la-Ville. Eurographics Association, pp 37–51

    Google Scholar 

  36. Tan P, Zeng G, Wang J, Kang SB, Quan L (2007) Image-based tree modeling. ACM Trans Graph 26(3):87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Tan .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tan, P. (2020). Image-Based Modeling. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_11-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics