Skip to main content

Image Registration

  • Living reference work entry
  • First Online:
Computer Vision

Synonyms

Image alignment; Image fusion

Related Concepts

Definition

Image registration aligns corresponding features of images via spatial transformations.

Background

Computer vision or image processing systems often need to align multiple images of the same or similar scenes. In medical imaging, for example, radiologists routinely compare images of a patient acquired at different times to monitor changes. The intensity difference between two images highlights such changes, but only if the corresponding features are in the same location. However, patients’ positions in imaging devices vary between visits, so raw images never have perfect alignment. Image registration transforms or warps one image so that the important objects and the regions of interest are in the same position as in the other image. The difference image then reveals intrinsic physical changes. Figure 1illustrates the idea. The problem...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Szeliski R, Shum HY (1997) Creating full view panoramic image mosaics and environment maps. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques. SIGGRAPH ’97, New York. ACM Press/Addison-Wesley Publishing Co, pp 251–258

    Google Scholar 

  2. Irani M, Peleg S (1991) Improving resolution by image registration. CVGIP: Graph Models Image Process 53(3):231–239

    Google Scholar 

  3. Maintz J, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1–36

    Article  Google Scholar 

  4. Lester H, Arridge SR (1999) A survey of hierarchical non-linear medical image registration. Pattern Recogn 32(1):129–149

    Article  Google Scholar 

  5. Hajnal JV, Hill DLG, Hawkes DJ (2001) Medical image registration. CRC Press, Boca Raton

    Book  Google Scholar 

  6. Zitová B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21(11):977–1000

    Article  Google Scholar 

  7. Tustison NJ, Avants BB, Gee JC (2019) Learning image-based spatial transformations via convolutional neural networks: a review. Magn Reson Imaging 12:142–153

    Article  Google Scholar 

  8. Haskins G, Kruger U, Yan P (2019) Deep learning in medical image registration: a survey. arXiv preprint: 1903.02026

    Google Scholar 

  9. Studholme C, Hill DLG, Hawkes DJ (1995) Multiresolution voxel similarity measures for mr-pet registration. In: Proceedings of information processing in medical imaging, Kluwer, pp 287–298

    Google Scholar 

  10. Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G (1995) Automated multi-modality image registration based on information theory. In: Proceedings of information processing in medical imaging, Kluwer, pp 263–274

    Google Scholar 

  11. Viola P, Wells WM (1995) Alignment by maximization of mutual information. In: Proceedings of international conference on computer vision. IEEE, pp 16–23

    Book  Google Scholar 

  12. Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual information based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004

    Article  Google Scholar 

  13. Fischer B, Modersitzki J (2003) Curvature based image registration. J Math Imaging Vision 18(1): 81–85

    Article  MathSciNet  MATH  Google Scholar 

  14. Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Non-rigid registration using free-form deformations: application to breast mr images. IEEE Trans Med Imaging 18:712–721

    Article  Google Scholar 

  15. Fornefett M, Rohr K, Stiehl HS (2001) Radial basis functions with compact support for elastic registration of medical images. Image Vis Comput 19:87–96

    Article  Google Scholar 

  16. Bajcsy R, Kovacic S (1989) Multiresolution elastic matching. Comput Vis Graph Image Proces 46(1): 1–21

    Article  Google Scholar 

  17. Crum WR, Scahill RI, Fox NC (2001) Automated hippocampal segmentation by regional fluid registration of serial MRI: validation and application in Alzheimer’s disease. NeuroImage 13(5):847–855

    Article  MATH  Google Scholar 

  18. Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC (2002) Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc Nat Acad Sci 99:4703–4707

    Article  Google Scholar 

  19. Alexander DC, Pierpaoli C, Basser PJ, Gee JC (2001) Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans Med Imaging 20:1131–1139

    Article  Google Scholar 

  20. Zhang H, Yushkevich PA, Alexander DC, Gee JC (2006) Deformable registration of diffusion tensor mr images with explicit orientation optimization. Med Image Anal 10:764–785

    Article  Google Scholar 

  21. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24:381–395

    Article  MathSciNet  Google Scholar 

  22. Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275

    Article  Google Scholar 

  23. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  24. Yang X, Kwitt R, Styner M, Niethammer M (2017) Quicksilver: fast predictive image registration–a deep learning approach. NeuroImage 158:378–396

    Article  Google Scholar 

  25. Hu Y, Modat M, Gibson E, Li W, Ghavami N, Bonmati E, Wang G, Bandula S, Moore CM, Emberton M et al (2018) Weakly-supervised convolutional neural networks for multimodal image registration. Med Image Anal 49:1–13

    Article  Google Scholar 

  26. de Vos BD, Berendsen FF, Viergever MA, Sokooti H, Staring M, Išgum I (2019) A deep learning framework for unsupervised affine and deformable image registration. Med Image Anal 52:128–143

    Article  Google Scholar 

  27. Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV (2019) Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging 38:1788–1800

    Article  Google Scholar 

  28. Long J, Shelhamer E, Darrell T (2015). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition. 3431–3440

    Google Scholar 

  29. DeTone D, Malisiewicz T, Rabinovich A (2016) Deep image homography estimation. arXiv preprint: 1606.03798

    Google Scholar 

  30. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156

    Article  Google Scholar 

  31. Andersson J, Smith S, Jenkinson M (2008) FNIRT: FMRIB’s non-linear image registration tool. In: 14th annual meeting of the organization for Human Brain Mapping, OHBM

    Google Scholar 

  32. Modat M, Ridgway GR, Taylor ZA, Lehmann M, Barnes J, Fox NC, Hawkes DJ, Ourselin S (2009) Fast free-form deformation using graphics processing units. Comput Methods Prog Biomed 98: 278–284

    Article  Google Scholar 

  33. Shamonin DP, Bron EE, Lelieveldt BP, Smits M, Klein S, Staring M (2014) Fast parallel image registration on cpu and gpu for diagnostic classification of Alzheimer’s disease. Front Neuroinform 7:50

    Google Scholar 

  34. Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38(1):95–113

    Article  Google Scholar 

  35. Avants B, Epstein C, Grossman M, Gee J (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41. Special Issue on The Third International Workshop on Biomedical Image Registration – WBIR 2006

    Google Scholar 

  36. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration. NeuroImage 46(3): 786–802

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Alexander .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hu, Y., Alexander, D.C., Mertzanidou, T. (2020). Image Registration. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_194-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_194-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics