Skip to main content

Active Stereo Vision

  • Living reference work entry
  • First Online:
Computer Vision
  • 153 Accesses

Related Concepts

Definition

Active stereo vision utilizes multiple cameras for 3D reconstruction, gaze control, measurement, tracking, and surveillance. Active stereo vision is to be contrasted with passive or dynamic stereo vision in that passive systems treat stereo imagery as a series of independent static images while active and dynamic systems employ temporal constraints to integrate stereo measurements over time. Active systems utilize feedback from the image streams to manipulate camera parameters, illuminants, or robotic motion controllers in real time.

Background

Stereo vision uses two or more cameras with overlapping fields of view to estimate 3D scene structure from 2D projections. Binocular stereo vision – the most common implementation – uses exactly two cameras, yet one can utilize more than two...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hogue A, Jenkin M (2006) Development of an underwater vision sensor for 3D reef mapping. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Beijing, pp 5351–5356

    Google Scholar 

  2. Vieville T (1997) A few steps towards 3D active vision. Springer, New York/Seraucuse

    Book  Google Scholar 

  3. Leung C, Appleton B, Lovell B, Sun C (2004) An energy minimisation approach to stereo-temporal dense reconstruction. In: Proceedings of the 17th international conference on pattern recognition (ICPR), vol 4, Cambridge, pp 72–75

    Google Scholar 

  4. Min D, Yea S, Vetro A (2010) Temporally consistent stereo matching using coherence function. In: 3DTV-conference: the true vision–capture, transmission and display of 3D video, Tampere, pp 1–4

    Google Scholar 

  5. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis 47(1–3):7–42

    Article  Google Scholar 

  6. Olson CF, Matthies LH, Schoppers M, Maimone MW (2001) Stereo ego-motion improvements for robust rover navigation. In: Proceedings IEEE international conference on robotics and automation (ICRA), vol 2, Seoul, pp 1099–1104

    Google Scholar 

  7. Davison AJ (1998) Mobile robot navigation using active vision. Ph.D. thesis, University of Oxford

    Google Scholar 

  8. Se S, Jasiobedzki P (2005) Instant scene modeler for crime scene reconstruction. In: 2005 IEEE computer society conference on computer vision and pattern recognition workshop on safety and security applications, San Diego, pp 123–123

    Google Scholar 

  9. Ahuja N, Abbott A (1993) Active stereo: integrating disparity, vergence, focus, aperture and calibration for surface estimation. IEEE Trans Pattern Anal Mach Intell (PAMI) 15(10):1007–1029

    Article  Google Scholar 

  10. Knight J (2002) Towards fully autonomous visual navigation. Ph.D. Thesis. University of Oxford

    Google Scholar 

  11. Everett HR (1995) Sensors for mobile robots: theory and application. A. K. Peters, Ltd., Natick

    Book  Google Scholar 

  12. Usenko V, Engel J, Stueckler J, Cremers D (2016) Direction visual-inertial odometry with stereo cameras. In: Proceedings IEEE international conference on robotics and automation (ICRA), Stockholm

    Google Scholar 

  13. Grosso E, Tistarelli M, Sandini G (1992) Active/dynamic stereo for navigation. In: Second European conference on computer vision, Santa Margherita Ligure, pp 516–525

    Google Scholar 

  14. Maimone MW, Leger PC, Biesiadecki JJ (2007) Overview of the Mars Exploration Rovers autonomous mobility and vision capabilities. In: IEEE international conference on robotics and autonomous systems space robotics workshop

    Google Scholar 

  15. Wallner F, Graf R, Dillman R (1995) Real-time map refinement by fusing sonar and active stereo-vision. In: IEEE international conference on robotics and automation (ICRA), Nagoya

    Google Scholar 

  16. Murray D, Little JJ (2000) Using real-time stereo vision for mobile robot navigation. Auton Robot 8(2):161–1710

    Article  Google Scholar 

  17. Diebel J, Reutersward K, Thrun S, Davis J, Gupta R (2004) Simultaneous localization and mapping with active stereo vision. In: IEEE/RSJ international conference on intelligent robots and systems, vol 4, Sendai, pp 3436–3443

    Google Scholar 

  18. Hartley RI, Zisserman A (2000) Multiple view geometry in computer vision. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  19. Faugeras O, Luong QT, Papadopoulou T (2001) The geometry of multiple images: the laws that govern the formation of images of a scene and some of their applications. MIT Press, Cambridge

    Book  Google Scholar 

  20. Horaud R, Csurka G (1998) Self-calibration and Euclidean reconstruction using motions of a stereo rig. In: Sixth international conference on computer vision (ICCV), Bombay, pp 96–103

    Google Scholar 

  21. Triggs B, McLauchlan P, Hartley R, Fitzgibbon A (2000) Bundle adjustment – a modern synthesis. In: Triggs B, Zisserman A, Szeliski R (eds) Vision algorithms: theory and practice, vol 1883. Lecture notes in computer science. Springer, New York, pp 298–372

    Chapter  Google Scholar 

  22. Williamson T, Thorpe C (1999) A trinocular stereo system for highway obstacle detection. In: IEEE international conference on robotics and automation (ICRA), Detroit, pp 2267–2273

    Google Scholar 

  23. Schleicher D, Bergasa LM, Ocaña M, Barea R, López E (2010) Real-time hierarchical stereo visual SLAM in large-scale environments. Robot Auton Syst 58:991–1002

    Article  Google Scholar 

  24. Se S, Jasiobedzki P, Wildes R (2007) Stereo-vision based 3D modeling of space structures. In: Proceedings of the SPIE conference on sensors and systems for space applications, vol 6555, Orlando

    Google Scholar 

  25. Rusinkiewicz S, Hall-Holt O, Levoy M (2002) Real-time 3D model acquisition. ACM Trans Graph 21(3):438–446

    Article  Google Scholar 

  26. Martel JNP, Muller J, Conradt J, Sandamirskaya Y (2018) An active approach to solving the stereo matching problem using event-based sensors. In: IEEE international symposium on circuits and systems (ISCAS), Florence, pp 1–5

    Google Scholar 

  27. Elbaz G, Avraham T, Fischer A (2017) 3D point cloud registration for localization using a neural network auto-encoder. In: IEEE conference on computer vision and pattern recognition (CVPR), Honolulu

    Google Scholar 

  28. Do Y (1999) Application of neural networks for stereo-camera calibration. In: International joint conference on neural networks (IJCNN), vol 4, Washington DC, pp 2719–2722

    Google Scholar 

  29. Luo W, Schwing G, Urtasun R (2016) Efficient deep learning for stereo matching. In: IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, pp 5695–5703

    Google Scholar 

  30. Chen BX, Sahdev R, Tsotsos JK (2017) Integrating stereo vision with a CNN tracker for a person-following robot. In: Liu M, Chen H, Vincze M (eds) Computer vision systems. ICVS’17. Lecture notes in computer science, vol 10528. Springer, Cham

    Google Scholar 

  31. Lu W, Xiang Z, Liu J (2013) High-performance visual odometry with two-stage local binocular BA and GPU. In: IEEE intelligent vehicles symposium (IV), Gold Coast, 23–26 June

    Google Scholar 

  32. Sanfourche M, Vittori V, Le Besnerais G (2013) eVO: a realtime embedded stereo odometry for MAV applications. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Tokyo, 3–7 Nov

    Google Scholar 

  33. Sun Q, Diao M, Li Y, Zhang Y (2017) An improved binocular visual odometry algorithm based on the random sample consensus in visual navigation systems. Indus Robot 44(4):542–551

    Article  Google Scholar 

  34. Huai J, Toth C, Greiner-Brzezinska D (2015) Stereo-inertial odometry using nonlinear optimization. In: Proceedings of 27th international technical meeting of the satellite division of the institute of navigation (ION GNSS+), Tampa

    Google Scholar 

  35. Frintrop S, Rome E, Christensen HI (2010) Computational visual attention systems and their cognitive foundations: a survey. ACM Trans Appl Percept 7(1):1–39

    Article  Google Scholar 

  36. Tsotsos JK (2001) Motion understanding: task-directed attention and representations that link perception with action. Int J Comput Vis 45(3):265–280

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Hogue .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hogue, A., Jenkin, M. (2020). Active Stereo Vision. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_282-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_282-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics