Skip to main content

Face Recognition

  • Living reference work entry
  • First Online:
Computer Vision
  • 79 Accesses

Synonyms

Face classification; Face recognition

Related Concepts

Definition

Face recognition is a biometric technique that identifies or verifies a person by comparing and analyzing the visual patterns from the person’s facial image. Face recognition can be divided into two types of tasks, face verification and face identification.

Face verification aims to determine whether two given face images are from the same person or not. Face identification aims to determine the identity of a query face image from a number of registered persons. Usually, the query image is compared with the face images of all the registered persons to identify the similar ones. Face identification involves one-to-many matches, while face verification involves one-to-one matches. As the number of registered persons in the database increases, both the accuracy and the efficiency of face identification decrease. However, the performance of the face verification is not much...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  Google Scholar 

  2. Belhumeur PN, Hespanha JP, Kriegman DJ (1996) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. In: Buxton B, Cipolla R (eds) European conference on computer vision. Springer, Berlin/Heidelberg, pp 43–58

    Google Scholar 

  3. Chen LF, Liao HYM, Ko MT, Lin JC, Yu GJ (2000) A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recogn 33(10):1713–1726

    Article  Google Scholar 

  4. Deng J, Guo J, Niannan X, Zafeiriou S (2019) Arcface: additive angular margin loss for deep face recognition. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  5. Dong C, Cao X, Wang L, Fang W, Jian S (2012) Bayesian face revisited: a joint formulation. In: European conference on computer vision

    Google Scholar 

  6. Gross R, Matthews I, Cohn J, Kanade T, Baker S (2008) Multi-pie. In: 2008 8th IEEE international conference on automatic face gesture recognition, pp 1–8, Sept 2008

    Google Scholar 

  7. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition

    Book  Google Scholar 

  8. He X, Yan S, Hu Y, Niyogi P, Zhang H-J (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  9. Heisele B, Ho P, Poggio T (2001) Face recognition with support vector machines: global versus component-based approach. In: IEEE international conference on computer vision

    Book  Google Scholar 

  10. Jie Hu, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: IEEE conference on computer vision and pattern recognition, pp 7132–7141

    Google Scholar 

  11. Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, Oct 2007

    Google Scholar 

  12. Kemelmacher-Shlizerman I, Seitz SM, Miller D, Brossard E (2016) The megaface benchmark: 1 million faces for recognition at scale. In: IEEE conference on computer vision and pattern recognition, pp 4873–4882

    Google Scholar 

  13. Kumar N, Berg AC, Belhumeur PN, Nayar SK (2010) Attribute and simile classifiers for face verification. In: IEEE international conference on computer vision

    Google Scholar 

  14. Li Z, Lin D, Tang X (2009) Nonparametric discriminant analysis for face recognition. IEEE Trans Pattern Anal Mach Intell 31(4):755–761

    Article  Google Scholar 

  15. Liu W, Wen Y, Yu Z, Li M, Raj B, Song L (2017) Sphereface: deep hypersphere embedding for face recognition. In: IEEE conference on computer vision and pattern recognition, pp 212–220

    Google Scholar 

  16. Liu W, Wen Y, Yu Z, Yang M (2016) Large-margin softmax loss for convolutional neural networks. In: International conference on machine learning, vol 2, p 7

    Google Scholar 

  17. Liu Y, Li H, Wang X (2017) Rethinking feature discrimination and polymerization for large-scale recognition. arXiv preprint arXiv:1710.00870

    Google Scholar 

  18. Maze B, Adams J, Duncan JA, Kalka N, Miller T, Otto C, Jain AK, Niggel WT, Anderson J, Cheney J et al (2018) Iarpa Janus benchmark–c: face dataset and protocol. In: 11th IAPR international conference on biometrics

    Google Scholar 

  19. Messer K, Matas J, Kittler J, Jonsson K (1999) XM2VTSDB: the extended M2VTS database. In: Second international conference on audio and video-based biometric person authentication, pp 72–77

    Google Scholar 

  20. Moghaddam B, Jebara T, Pentland A (2000) Bayesian face recognition. Pattern Recogn 33(11):1771–1782

    Article  Google Scholar 

  21. Ojala T, Pietikäinen M, Mäenpää T (2002) Gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  22. Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW, Hoffman K, Marques J, Worek W (2005) Overview of the face recognition grand challenge. In: IEEE conference on computer vision and pattern recognition, vol 1, pp 947–954, June 2005

    Google Scholar 

  23. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and clustering. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  24. Taigman Y, Ming Y, Ranzato MA, Wolf L (2014) Deepface: closing the gap to human-level performance in face verification. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  25. Turk MA, Pentland AP (2011) Face recognition using eigenfaces. In: International conference on computer research and development

    Google Scholar 

  26. Wang F, Cheng J, Liu W, Liu H (2018) Additive margin softmax for face verification. IEEE Signal Process Lett 25(7):926–930

    Article  Google Scholar 

  27. Wang F, Xiang X, Cheng J, Yuille AL (2017) Normface: l 2 hypersphere embedding for face verification. In: ACM international conference on multimedia. ACM, pp 1041–1049

    Google Scholar 

  28. Wang H, Wang Y, Zhou Z, Ji X, Gong D, Zhou J, Li Z, Liu W (2018) Cosface: large margin cosine loss for deep face recognition. In: The IEEE conference on computer vision and pattern recognition, pp 5265–5274

    Google Scholar 

  29. Wang X, Tang X (2004) Dual-space linear discriminant analysis for face recognition. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  30. Wang X, Tang X (2009) Face photo-sketch synthesis and recognition. IEEE Trans Pattern Anal Mach Intell 31(11):1955–1967

    Article  MathSciNet  Google Scholar 

  31. Wang X, Zhang C, Zhang Z (2009) Boosted multi-task learning for face verification with applications to web image and video search. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  32. Wen Y, Zhang K, Li Z, Qiao Y (2019) A comprehensive study on center loss for deep face recognition. Int J Comput Vis 127(6–7):668–683

    Article  Google Scholar 

  33. Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: European conference on computer vision, Springer, pp 499–515

    Google Scholar 

  34. Wiskott L, Krüger N, Kuiger N, von der Malsburg C (1997) Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell 19(7):775–779

    Article  Google Scholar 

  35. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  36. Yi S, Wang X, Tang X (2014) Deep learning face representation from predicting 10,000 classes. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  37. Yu H, Yang J (2001) A direct LDA algorithm for high-dimensional data – with application to face recognition. Pattern Recogn 34(10):2067–2070

    Article  Google Scholar 

  38. Zhang X, Fang Z, Wen Y, Li Z, Qiao Y (2017) Range loss for deep face recognition with long-tailed training data. In: IEEE international conference on computer vision, pp 5409–5418

    Google Scholar 

  39. Zhang Z, Kanade T (1998) Determining the epipolar geometry and its uncertainty: a review. Int J Comput Vis 27:161–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qiao .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Qiao, Y., Wang, X. (2021). Face Recognition. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_354-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_354-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics