Skip to main content

Deblurring

  • Living reference work entry
  • First Online:
Computer Vision
  • 219 Accesses

Synonyms

Deconvolution

Related Concepts

Definition

Deblurring is a process to recover sharp and clear images from blurry images.

Background

Blur usually occurs when taking a photo with long exposure time or with wrong focal length. This is because the lights captured for a pixel are mixed with the lights captured for the other pixels within a local neighborhood during the exposure period. Such effect is modeled by the blur kernel (a.k.a., point spread function) which describes how the lights are mixed during the exposure period. The goal of deblurring is to recover sharp and clear images of the scene from the captured blurred images. Deblurring, however, is a severely ill-posed problem because the number of unknowns exceeds the number of equations that can be derived from the observed data.

The problem of deblurring can be further categorized into non-blind deblurring and blind deblurring according...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tai Y-W, Tan P, Brown MS (2011) Richardson-lucy deblurring for scenes under a projective motion path. IEEE Trans Pattern Anal Mach Intell 33(8):1603–1618

    Google Scholar 

  2. Whyte O, Sivic J, Zisserman A (2014) Deblurring shaken and partially saturated images. Int J Comput Vis 110(2):185–201

    Google Scholar 

  3. Richardson WH (1972) Bayesian-based iterative method of image restoration. J Opt Soc Am (1917–1983) 62(1):55

    Google Scholar 

  4. Lucy LB (1974) An iterative technique for the rectification of observed distributions. J Astron 79:745

    Google Scholar 

  5. Wiener N (1964) Extrapolation, interpolation, and smoothing of stationary time series. Wiley, New York

    Google Scholar 

  6. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60((1–4)):745

    Google Scholar 

  7. Krishnan D, Fergus R (2009) Fast image deconvolution using hyper-laplacian priors. In: Advances in neural information processing systems, Vancouver, pp 1033–1041

    Google Scholar 

  8. Zoran D, Weiss Y (2011) From learning models of natural image patches to whole image restoration. In: IEEE international conference on computer vision (ICCV), Barcelona, pp 479–486

    Google Scholar 

  9. Schmidt U, Roth S (2014) Shrinkage fields for effective image restoration. In: IEEE conference on computer vision and pattern recognition (CVPR), Columbus, pp 2774–2781

    Google Scholar 

  10. Schmidt U, Rother C, Nowozin S, Jancsary J, Roth S (2013) Discriminative non-blind deblurring. In: IEEE conference on computer vision and pattern recognition, Portland, pp 604–611

    Google Scholar 

  11. Ben-Ezra M, Nayar SK (2004) Motion-based motion deblurring. IEEE Trans Pattern Anal Mach Intell 26(6):689–698

    Google Scholar 

  12. Tai Y-W, Du H, Brown MS, Lin S (2008) Image/video deblurring using a hybrid camera. In: IEEE conference on computer vision and pattern recognition (CVPR), Anchorage

    Google Scholar 

  13. Levin A, Sand P, Cho TS, Durand F, Freeman WT (2008) Motion-invariant photography. ACM Trans Graph 27(3):71

    Google Scholar 

  14. Joshi N, Kang SB, Lawrence Zitnick C, Szeliski R (2010) Image deblurring using inertial measurement sensors. ACM Trans Graph 29(4):30:1–30:9

    Google Scholar 

  15. Park SH, Levoy M (2014) Gyro-based multi-image deconvolution for removing handshake blur. In: IEEE conference on computer vision and pattern recognition (CVPR), Columbus, pp 3366–3373

    Google Scholar 

  16. Hu Z, Yuan L, Lin S, Yang M-H (2016) Image deblurring using smartphone inertial sensors. In: IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, pp 1855–1864

    Google Scholar 

  17. Yuan L, Sun J, Quan L, Shum H-Y (2007) Image deblurring with blurred/noisy image pairs. ACM Trans Graph 26(3):1

    Google Scholar 

  18. Chen J, Yuan L, Tang C-K, Quan L (2008) Robust dual motion deblurring. In: IEEE conference on computer vision and pattern recognition (CVPR), Anchorage

    Google Scholar 

  19. Chan TF, Wong C-K (1998) Total variation blind deconvolution. IEEE Trans Image Process 7(3):370–375

    Google Scholar 

  20. Fergus R, Singh B, Hertzmann A, Roweis ST, Freeman WT (2006) Removing camera shake from a single photograph. ACM Trans Graph 25(3):787–794

    MATH  Google Scholar 

  21. Shan Q, Jia J, Agarwala A (2008) High-quality motion deblurring from a single image. ACM Trans Graph 27(3):73

    Google Scholar 

  22. Levin A, Weiss Y, Durand F, Freeman WT (2009) Understanding and evaluating blind deconvolution algorithms. In: IEEE conference on computer vision and pattern recognition (CVPR), Miami, pp 1964–1971

    Google Scholar 

  23. Levin A, Weiss Y, Durand F, Freeman WT (2011) Efficient marginal likelihood optimization in blind deconvolution. In: IEEE conference on computer vision and pattern recognition (CVPR), Colorado Springs, pp 2657–2664

    Google Scholar 

  24. Levin A, Fergus R, Durand F, Freeman WT (2007) Image and depth from a conventional camera with a coded aperture. ACM Trans Graph 26(3):70

    Google Scholar 

  25. Cho S, Lee S (2009) Fast motion deblurring. ACM Trans Graph 28(5):145

    Google Scholar 

  26. Xu L, Jia J (2010) Two-phase kernel estimation for robust motion deblurring. In: 11th European conference on computer vision (ECCV), Heraklion, pp 157–170

    Google Scholar 

  27. Köhler R, Hirsch M, Mohler BJ, Schölkopf B, Harmeling S (2012) Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database. In: 12th European conference on computer vision (ECCV), Florence, pp 27–40

    Google Scholar 

  28. Krishnan D, Tay T, Fergus R (2011) Blind deconvolution using a normalized sparsity measure. In: IEEE conference on computer vision and pattern recognition (CVPR), Colorado Springs, pp 233–240

    Google Scholar 

  29. Xu L, Zheng S, Jia J (2013) Unnatural L0 sparse representation for natural image deblurring. In: IEEE conference on computer vision and pattern recognition (CVPR), Portland, pp 1107–1114

    Google Scholar 

  30. Pan J, Su Z (2013) Fast L0 -regularized kernel estimation for robust motion deblurring. IEEE Signal Process Lett 20(9):841–844

    Google Scholar 

  31. Pan J, Hu Z, Su Z, Yang M-H (2017) L0-regularized intensity and gradient prior for deblurring text images and beyond. IEEE Trans Pattern Anal Mach Intell 39(2):342–355

    Google Scholar 

  32. Michaeli T, Irani M (2014) Blind deblurring using internal patch recurrence. In: 13th European conference on computer vision (ECCV), Zurich, pp 783–798

    Google Scholar 

  33. Pan J, Sun D, Pfister H, Yang M-H (2018) Deblurring images via dark channel prior. IEEE Trans Pattern Anal Mach Intell 40(10):2315–2328

    Google Scholar 

  34. Hirsch M, Schuler CJ, Harmeling S, Schölkopf B (2011) Fast removal of non-uniform camera shake. In: IEEE international conference on computer vision (ICCV), Barcelona, pp 463–470

    Google Scholar 

  35. Zuo W, Ren D, Zhang D, Gu S, Zhang L (2016) Learning iteration-wise generalized shrinkage-thresholding operators for blind deconvolution. IEEE Trans Image Process 25(4):1751–1764

    MathSciNet  MATH  Google Scholar 

  36. Sun J, Cao W, Xu Z, Ponce J (2015) Learning a convolutional neural network for non-uniform motion blur removal. In: IEEE conference on computer vision and pattern recognition (CVPR), Boston, pp 769–777

    Google Scholar 

  37. Gong D, Yang J, Liu L, Zhang Y, Reid ID, Shen C, van den Hengel A, Shi Q (2017) From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. In: IEEE conference on computer vision and pattern recognition (CVPR), Honolulu, pp 3806–3815

    Google Scholar 

  38. Schuler CJ, Hirsch M, Harmeling S, Schölkopf B (2016) Learning to deblur. IEEE Trans Pattern Anal Mach Intell 38(7):1439–1451

    Google Scholar 

  39. Pan J, Ren W, Hu Z, Yang M-H (2019) Learning to deblur images with exemplars. IEEE Trans Pattern Anal Mach Intell 41(6):1412–1425

    Google Scholar 

  40. Nah S, Kim TH, Lee KM (2017) Deep multi-scale convolutional neural network for dynamic scene deblurring. In: IEEE conference on computer vision and pattern recognition (CVPR), Honolulu, pp 257–265

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tai, YW., Pan, J. (2020). Deblurring. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_510-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_510-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics