Skip to main content

Descattering

  • Living reference work entry
  • First Online:
Computer Vision
  • 137 Accesses

Synonyms

Dehazing

Related Concepts

Definition

The process of descattering refers to enhancing images acquired in scattering media.

Background

Imaging in scattering media poses special concerns for computer vision methods. Examples for such media include haze or bad weather, water, blood, and body tissue. Light propagating in such media is scattered and attenuated. When imaging, some light from the source is scattered back from the medium toward the camera, before ever reaching the object. This light is an additive radiance component in the image that veils the object. In air, this additive component is often termed airlight, and in water and tissue, it is termed veiling-light or backscatter (this term will be used further on). The backscatter hampers visibility by reducing contrast and signal-to-noise ratio (SNR) in the images [1]. The backscatter increases the measured radiance, which increases the photon noise, without increasing the signal...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Treibitz T, Schechner YY (2012) Resolution loss without imaging blur. J Opt Soc Am A 29(8):1516–1528

    Article  Google Scholar 

  2. Kokhanovsky AA (2004) Light scattering media optics, 3rd edn. Springer, Berlin, p 200

    Google Scholar 

  3. Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48:233–254

    Article  Google Scholar 

  4. Jaffe JS (1990) Computer modelling and the design of optimal underwater imaging systems. IEEE J Ocean Eng 15:101–111

    Article  Google Scholar 

  5. Treibitz T, Schechner YY (2009) Active polarization descattering. IEEE Trans Pattern Anal Mach Intell 31:385–399

    Article  Google Scholar 

  6. Oakley JP, Satherley BL (1998) Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Trans Image Process 78:167–179

    Article  Google Scholar 

  7. Narasimhan SG, Nayar SK (2003) Interactive (de) weathering of an image using physical models. In: IEEE workshop on color and photometric methods in computer vision, Nice

    Google Scholar 

  8. Fattal R (2008) Single image dehazing. ACM Trans Graph 27:1–9

    Article  Google Scholar 

  9. Tan RT (2008) Visibility in bad weather from a single image. In: Proceedings of the IEEE conference on computer vision pattern recognition (CVPR), Anchorage

    Google Scholar 

  10. Carlevaris-Bianco N, Mohan A, Eustice R (2010) Initial results in underwater single image dehazing. In: OCEANS, Seattle

    Book  Google Scholar 

  11. He K, Sun J, Tang X (2010) Single image haze removal using dark channel prior. IEEE Trans PAMI 33:2341–2353

    Google Scholar 

  12. Bekerman Y, Avidan S, Treibitz T (2020) Unveiling optical properties in underwater images. In: IEEE proceedings of international conference on computational photography (ICCP)

    Google Scholar 

  13. Yang M, Hu J, Li C, Rohde G, Du Y, Hu K (2019) An in-depth survey of underwater image enhancement and restoration. IEEE Access 7:123638–123657

    Article  Google Scholar 

  14. Anwar S, Li C (2019) Diving deeper into underwater image enhancement: a survey. arXiv preprint :1907.07863

    Google Scholar 

  15. Tan C, Sluzek A, Seet G (2005) Model of gated imaging in turbid media. Opt Eng 44:116002

    Article  Google Scholar 

  16. Satat G, Heshmat B, Raviv D, Raskar R (2016) All photons imaging through volumetric scattering. Sci Rep 6(1):33946

    Article  Google Scholar 

  17. Boccolini A, Tonolini F, Leach J, Henderson R, Faccio D (2017) Imaging inside highly diffusive media with a space and time-resolving single-photon sensor. Imaging Systems and Applications ITu3E–2

    Google Scholar 

  18. Giddings T, Shirron J, Tirat-Gefen A (2005) Eodes-3: an electro-optic imaging and performance prediction model. In: Proceedings of the MTS/IEEE OCEANS 2005. IEEE, Washington, DC, pp 1380–1387

    Google Scholar 

  19. Narasimhan SG, Nayar SK, Sun B, Koppal SJ (2005) Structured light in scattering media. In: Proceedings of the IEEE ICCV, Beijing, vol 1, pp 420–427

    Google Scholar 

  20. Jaffe J (2010) Enhanced extended range underwater imaging via structured illumination. Opt Expr 18(12):12328–12340

    Article  Google Scholar 

  21. Levoy M, Chen B, Vaish V, Horowitz M, McDowall I, Bolas M (2004) Synthetic aperture confocal imaging. ACM Trans Graph 23:825–834

    Article  Google Scholar 

  22. Nayar SK, Krishnan G, Grossberg MD, Raskar R (2006) Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans Graph 25:935–944

    Article  Google Scholar 

  23. O’Toole M, Mather J, Kutulakos KN (2014) 3D shape and indirect appearance by structured light transport. In: Proceedings of EEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  24. Schechner YY, Karpel N (2005) Recovery of underwater visibility and structure by polarization analysis. IEEE J Ocean Eng 30:570–587

    Article  Google Scholar 

  25. Schechner YY, Narasimhan SG, Nayar SK (2003) Polarization-based vision through haze. Appl Opt 42:511–525

    Article  Google Scholar 

  26. Jacques SL, Ramella-Roman J, Lee K (2002) Imaging skin pathology with polarized light. J Biomed Opt 7:329–340

    Article  Google Scholar 

  27. Chaigne T, Katz O, Boccara AC, Fink M, Bossy E, Gigan S (2014) Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nat Photonics 8(1):58–64

    Article  Google Scholar 

  28. Murez Z, Treibitz T, Ramamoorthi R, Kriegman D (2015) Photometric stereo in a scattering medium. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 3415–3423

    Google Scholar 

  29. Cui M, Yang C (2010) Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt Express 18(4):3444–3455

    Article  Google Scholar 

  30. Treibitz T, Schechner YY (2009) Recovery limits in pointwise degradation. In: IEEE ICCP, San Francisco

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tali Treibitz .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Treibitz, T. (2020). Descattering. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_554-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_554-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics