Skip to main content

Digitization

  • Living reference work entry
  • First Online:
Computer Vision

Synonyms

Relation between objects and their digital images

Definition

Digitization is a mathematical model of converting continuous subsets of the plane or space (representing real objects) to digital sets in \(\mathbb {Z}^2\) or \(\mathbb {Z}^3\) or similar grids (representing segmented images of these objects). This definition can be generalized to any dimension n > 3: Digitization converts (transforms) continuous subsets of \(\mathbb {R}^n\) to digital sets in \(\mathbb {Z}^n\) or, equivalently, to functions from \(\mathbb {Z}^n\) to {0, 1}.

Background

A fundamental task of knowledge representation and processing is to infer properties of real objects or situations given their representations. In spatial knowledge representation and, in particular, in computer vision and medical imaging, real objects are represented in a pictorial way as finite and discrete sets of pixels or voxels. The discrete sets result in a quantization process, in which real objects are approximated by...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pavlidis T (1982) Algorithms for graphics and image processing. Computer Science Press, Cambridge

    Book  Google Scholar 

  2. Serra J (1982) Image analysis and mathematical morphology. Academic, San Diego

    MATH  Google Scholar 

  3. Latecki LJ, Conrad C, Gross A (1998) Preserving topology by a digitization process. J Math Imaging Vis 8:131–159

    Article  MathSciNet  Google Scholar 

  4. Latecki LJ (1998) Discrete representation of spatial objects in computer vision. Kluwer, Dordrecht

    Book  Google Scholar 

  5. Tajine M, Ronse C (2002) Topological properties of Hausdorff discretization, and comparison to other discretization schemes. Theor Comput Sci 283(1):243–268

    Article  MathSciNet  Google Scholar 

  6. Stelldinger P, Köthe U (2005) Toward a general sampling theory for shape preservation. Image Vis Comput J 23(2):237–248

    Article  Google Scholar 

  7. Stelldinger P, Latecki LJ, Siqueira M (2007) Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE Trans Pattern Anal Mach Intell 29(1):126–140

    Article  Google Scholar 

  8. Stelldinger P (2008) Image digitization and its influence on shape properties in finite dimensions. DISKI 312. IOS, Amsterdam

    Google Scholar 

  9. Lachaud JO, Thibert B (2016) Properties of Gauss digitized shapes and digital surface integration. J Math Imaging Vis 54:162–180

    Article  MathSciNet  Google Scholar 

  10. Andres E (2015) Digital analytical geometry: how do I define a digital analytical object? In: Barneva R, Bhattacharya B, Brimkov V (eds) Combinatorial image analysis. IWCIA 2015. Lecture notes in computer science, Springer, Cham, vol 9448, pp 3–17

    Google Scholar 

  11. Mazo L, Passat N, Couprie M, Ronse C (2012) Digital imaging: a unified topological framework. J Math Imaging Vis 44:19–37

    Article  MathSciNet  Google Scholar 

  12. Kong T, Rosenfeld A (1990) If we use 4- or 8-connectedness for both the objects and the background, the Euler characteristics is not locally computable. Pattern Recognit Lett 11(4):231–232

    Article  Google Scholar 

  13. Klette R, Rosenfeld A (2004) Digital geometry. Morgan Kaufman, Amsterdam

    MATH  Google Scholar 

  14. Marr D (1983) Vision. Freeman, San Francisco

    Google Scholar 

  15. Latecki LJ (1997) 3D well-composed pictures. Graph Models Image Process 59(3):164–172

    Article  Google Scholar 

  16. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: SIGGRAPH ’87: proceedings of the 14th annual conference on computer graphics and interactive techniques. ACM, New York, pp 163–169

    Chapter  Google Scholar 

  17. Dürst MJ (1988) Letters: additional reference to “marching cubes". SIGGRAPH Comput Graph 22(2):243

    Article  Google Scholar 

  18. Nielson GM, Hamann B (1991) The asymptotic decider: resolving the ambiguity in marching cubes. In: Proceedings of the 2nd IEEE conference on visualization (Visualization’91), San Diego, pp 83–91

    Google Scholar 

  19. Boutry N, Géraud T, Najman L (2018a) A tutorial on well-composedness. J Math Imaging Vis 60:443–478

    Article  MathSciNet  Google Scholar 

  20. Boutry N, Gonzalez-Diaz R, Jimenez MJ (2018b) Weakly well-composed cell complexes over nD pictures. https://doi.org/10.1016/j.ins.2018.06.005

    Article  MathSciNet  Google Scholar 

  21. Forman R (1998) Morse theory for cell complexes. Adv Math 134:90–145

    Article  MathSciNet  Google Scholar 

  22. Edelsbreunner H, Harer J (2010) Computational topology: an introduction. American Mathematical Society. ISBN 978-0-8218-4925-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peer Stelldinger or Longin Jan Latecki .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gonzalez-Diaz, R., Stelldinger, P., Latecki, L.J. (2020). Digitization. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_645-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_645-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics