Skip to main content

Compressive Sensing

  • Living reference work entry
  • First Online:
Computer Vision

Synonyms

Compressed sensing

Related Concepts

Definition

Compressive sensing refers to parsimonious sensing, recovery, and processing of signals under a sparse prior.

Background

The design of conventional sensors is based heavily on the Shannon-Nyquist sampling theorem which states that a signal x band limited to W Hz is determined completely by its discrete time samples provided the sampling rate is greater than 2Wsamples per second. This theorem is at the heart of modern signal processing as it enables signal processing in the discrete time or digital domain without any loss of information. However, for many applications, the Nyquist sampling rate is high as well as redundant and unnecessary. As a motivating example, in modern cameras, the high resolution of the CCD sensor reflects the large amount of data sensed to capture an image. A 10 megapixel camera, in effect, takes 10 million linear measurements of the scene. Yet, almost immediately...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  Google Scholar 

  2. Candès E, Tao T (2006) Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inf Theory 52(12):5406–5425

    Article  MathSciNet  Google Scholar 

  3. Donoho D (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  Google Scholar 

  4. Schechner Y, Nayar S, Belhumeur P (2003) A theory of multiplexed illumination. In: International conference on computer vision, Nice, pp 808–815

    Google Scholar 

  5. Haupt J, Nowak R (2006) Signal reconstruction from noisy random projections. IEEE Trans Inf Theory 52(9):4036–4048

    Article  MathSciNet  Google Scholar 

  6. Baraniuk R (2007) Compressive sensing. IEEE Signal Process Mag 24(4):118–120, 124

    Article  Google Scholar 

  7. Davenport M, Laska J, Boufouons P, Baraniuk R (2009) A simple proof that random matrices are democratic. Technical report TREE 0906, Rice University, ECE Department

    Google Scholar 

  8. Donoho D (2006) For most large underdetermined systems of linear equations, the minimal ℓ 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829

    Article  MathSciNet  Google Scholar 

  9. Candès E, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    Article  MathSciNet  Google Scholar 

  10. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc B 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  11. Needell D, Tropp J (2009) CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 26(3):301–321

    Article  MathSciNet  Google Scholar 

  12. Baraniuk R, Cevher V, Duarte M, Hegde C (2010) Model-based compressive sensing. IEEE Trans Inf Theory 56(4):1982–2001

    Article  MathSciNet  Google Scholar 

  13. Duarte M, Davenport M, Takhar D, Laska J, Sun T, Kelly K, Baraniuk R (2008) Single-pixel imaging via compressive sampling. IEEE Signal Process Mag 25(2):83–91

    Article  Google Scholar 

  14. Wagadarikar A, John R, Willett R, Brady D (2008) Single disperser design for coded aperture snapshot spectral imaging. Appl Opt 47(10):B44–B51

    Article  Google Scholar 

  15. Sankaranarayanan AC, Turaga P, Baraniuk R, Chellappa R (2010) Compressive acquisition of dynamic scenes. In: ECCV, Heraklion, pp 129–142

    Google Scholar 

  16. Peers P, Mahajan D, Lamond B, Ghosh A, Matusik W, Ramamoorthi R, Debevec P (2009) Compressive light transport sensing. ACM Trans Graph 28(1):1–3

    Article  Google Scholar 

  17. Cevher V, Sankaranarayanan A, Duarte M, Reddy D, Baraniuk R, Chellappa R (2008) Compressive sensing for background subtraction. In: Proceedings of the European conference on computer Vision (ECCV), Marseille

    Google Scholar 

  18. Cevher V, Duarte M, Hegde C, Baraniuk R (2008) Sparse signal recovery using Markov random fields. In: Neural information processing systems, Vancouver, pp 257–264

    Google Scholar 

  19. Davenport M, Boufounos P, Wakin M, Baraniuk R (2010) Signal processing with compressive measurements. IEEE J Sel Top Signal Process 4(2):445–460

    Article  Google Scholar 

  20. Hegde C, Wakin M, Baraniuk R (2007) Random projections for manifold learning, Vancouver

    Google Scholar 

  21. Davenport M, Duarte M, Wakin M, Laska J, Takhar D, Kelly K, Baraniuk R (2007) The smashed filter for compressive classification and target recognition, San Jose

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aswin C. Sankaranarayanan .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sankaranarayanan, A.C., Baraniuk, R.G. (2020). Compressive Sensing. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_647-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_647-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics