Skip to main content

Differential Invariants

  • Living reference work entry
  • First Online:
Computer Vision
  • 36 Accesses

Synonyms

Local invariants

Related Concepts

Definition

Invariants are entities that do not change under the action of a transformation group, e.g., projective invariants are unchanged under projective transformations. One can distinguish between differential and algebraic invariants. Algebraic invariants involve algebraic forms such as points, lines, conics, etc., while differential invariants involve general differentiable curves and surfaces.

Background

This entry concentrates on differential invariants of curves, mostly in the plane. Also touched on are differential invariants of space curves and surfaces and of fields such as optic flow and shading.

Projective differential and algebraic invariants, well developed in the mathematical literature, were both introduced into computer vision in [1] in order to eliminate the search for the correct viewpoint when trying to recognize an object. Compared...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Weiss I (1988) Projective invariants of shape. In: Proceedings of computer vision and image processing, Ann Arbor, pp 291–297

    Google Scholar 

  2. Wilczynski EJ (1906) Projective differential geometry of curves and ruled surfaces. Teubner, Leipzig

    MATH  Google Scholar 

  3. Wilczynski EJ (1908) Projective differential geometry of curved surfaces (Second Memoir). Am Math Soc Trans 9:79

    MATH  Google Scholar 

  4. Lane EP (1942) A treatise on projective differential geometry. University of Chicago Press, Chicago

    MATH  Google Scholar 

  5. Guggenheimer H (1963) Differential geometry. Dover, New York

    MATH  Google Scholar 

  6. Springer CE (1964) Geometry and analysis of projective spaces. Freeman, San Francisco

    MATH  Google Scholar 

  7. Halphen M (1880) Sur les invariants différentiels des courbes gauches. J Ec Polyt 28(1)

    Google Scholar 

  8. Weiss I (1993) Noise resistant invariants of curves. IEEE Trans Pattern Anal Mach Intell (PAMI) 15(9):943–948

    Article  Google Scholar 

  9. Weiss I (1999) Model-based recognition of 3D curves from one view. J Math Imaging Vision 10:1–10

    Article  Google Scholar 

  10. Weiss I (1994) High order differentiation filters that work. IEEE Trans Pattern Anal Mach Intell (PAMI) 16(7):734–739

    Article  Google Scholar 

  11. Rivlin E, Weiss I (1995) Local invariants for recognition. IEEE Trans Pattern Anal Mach Intell (PAMI) 17(3):226–238

    Article  Google Scholar 

  12. Weiss I, Ray M (2001) Model-based recognition of 3D objects from single images. IEEE Trans Pattern Anal Mach Intell (PAMI) 23(2):116–128

    Article  Google Scholar 

  13. Bruckstein A, Rivlin E, Weiss I (1997) Scale space invariants for recognition. Image Vision Comput 15(5):335–344

    Article  Google Scholar 

  14. Olver PJ (2001) Joint invariant signatures. Found Comput Math 1:3–67

    Article  MathSciNet  Google Scholar 

  15. Olver PJ, Sapiro J, Tannenbaum A (1994) Differential invariant signatures and flows in computer vision, a symmetry group approach. In: Ter Haar Romeny BM (ed) Geometry driven diffusion in computer vision. Kluwer Academic Publishers, Dordrecht, pp 255–306

    Chapter  Google Scholar 

  16. Weiss I (1994) Invariants for recovering shape from shading. In: Mundy J, Zisserman A (eds) Applications of invariance in computer vision II. Springer Verlag lecture notes in computer science, vol 825. Springer, Berlin/Heidelberg

    Google Scholar 

  17. Aghayan R, Ellis T, Dehmeshki J (2014) Planar numerical signature theory applied to object recognition. J Math Imaging Vision 48:583–605

    Article  MathSciNet  Google Scholar 

  18. Calabi E, Olver PJ, Shakiban C, Tannenbaum A, Haker S (1998) Differential and numerically invariant signature curves applied to onject recognition. Int J Comput Vis 26:107–135

    Article  Google Scholar 

  19. Doermann D, Rivlin E, Weiss I (1996) Applying algebraic and differential invariants for logo recognition. Mach Vis Appl 9:73–86

    Article  Google Scholar 

  20. Keren D, Rivlin E, Shimshoni I, Weiss I (2000) Recognizing 3D objects using tactile sensing and curve invariants. J Math Imaging Vision 12(1):5–23

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Weiss .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Weiss, I. (2021). Differential Invariants. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_658-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_658-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics