Skip to main content

Hyperspectral/Multispectral Imaging

  • Living reference work entry
  • First Online:
Computer Vision
  • 53 Accesses

Synonyms

Chemical imaging

Related Concepts

Definition

Hyperspectral imaging (HSI) is a newly developing technique combining the advantages of optical imaging and spectroscopy to simultaneously collect spatial and spectral information from a scene. A set of monochromatic images at almost continuous hundreds of wavelengths can be acquired by HSI.

Background

The light emitted from illumination sources or reflected from scene objects generally spans a broad range of wavelengths [13]. The vision of the human eye is dependent on three basic color (red, green, and blue) bands, which means the human eye is only able to see a limited part of the electromagnetic spectrum and distinguish between objects based on their different spectral responses in that narrow spectral range. Though trichromatic sensing suffices for the human visual system in many circumstances, hyperspectral...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Adams GL (1994) Liquid crystal tunable filter

    Google Scholar 

  2. Baldry IK, Blandhawthorn J (2000) A tunable echelle imager. Publ Astron Soc Pac 112(774):1112–1120

    Article  Google Scholar 

  3. Bao J, Bawendi MG (2015) A colloidal quantum dot spectrometer. Nature 523(7558):67–70

    Article  Google Scholar 

  4. Baraniuk RG (2007) Compressive sensing [lecture notes]. IEEE Signal Process Mag 24(4):118–121

    Article  Google Scholar 

  5. Bioucasdias JM, Figueiredo MAT (2007) A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans Image Process 16(12):2992–3004

    Article  MathSciNet  Google Scholar 

  6. Bowen IS (1938) The image-slicer a device for reducing loss of light at slit of stellar spectrograph. Astrophys J 88:113

    Article  Google Scholar 

  7. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers

    Google Scholar 

  8. Brady DJ, Gehm ME (2006) Compressive imaging spectrometers using coded apertures. In: Visual information processing XV, vol 6246. International Society for Optics and Photonics, Bellingham, p 62460A

    Google Scholar 

  9. Cao X, Du H, Tong X, Dai Q, Lin S (2011) A prism-mask system for multispectral video acquisition. IEEE Trans Pattern Anal Mach Intell 33(12):2423–2435

    Article  Google Scholar 

  10. Courtes G (1960) Méthodes d’observation et étude de l’hydrogène interstellaire en émission. In: Annales d’Astrophysique, vol 23, p 115

    Google Scholar 

  11. Descour MR (1996) Throughput advantage in imaging fourier-transform spectrometers. In: Imaging spectrometry II, vol 2819. International Society for Optics and Photonics, Bellingham, pp 285–290

    Chapter  Google Scholar 

  12. Descour M, Dereniak E (1995) Computed-tomography imaging spectrometer: experimental calibration and reconstruction results. Appl Opt 34(22):4817–4826

    Article  Google Scholar 

  13. Du H, Tong X, Cao X, Lin S (2009) A prism-based system for multispectral video acquisition. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 175–182

    Google Scholar 

  14. Feng Y, Sun D (2012) Application of hyperspectral imaging in food safety inspection and control: a review. Crit Rev Food Sci Nutr 52(11):1039–1058

    Article  Google Scholar 

  15. Gao L, Kester RT, Hagen N, Tkaczyk TS (2010) Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy. Opt Express 18(14):14330–14344

    Article  Google Scholar 

  16. Gehm ME, John R, Brady DJ, Willett RM, Schulz TJ (2007) Single-shot compressive spectral imaging with a dual-disperser architecture. Opt Express 15(21):14013–14027

    Article  Google Scholar 

  17. Gottlieb M, Wachtel A (1969) Acousto-optic tunable filter. J Opt Soc Am 59(6):744–747

    Article  Google Scholar 

  18. Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri BE, Chovit CJ, Solis M et al (1998) Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (aviris). Remote Sens Environ 65(3):227–248

    Article  Google Scholar 

  19. Gu J, Kobayashi T, Gupta M, Nayar SK (2011) Multiplexed illumination for scene recovery in the presence of global illumination. In: 2011 international conference on computer vision. IEEE, pp 691–698

    Google Scholar 

  20. Hagen NA, Kudenov MW (2013) Review of snapshot spectral imaging technologies. Opt Eng 52(9):090901

    Article  Google Scholar 

  21. Kapany NS (2004) Fiber optics. In: Concepts of Classical Optics, J Strong Ed, Dover, Mineola, pp 553–579

    Google Scholar 

  22. Kudenov MW, Dereniak EL (2010) Compact snapshot birefringent imaging fourier transform spectrometer. Proc SPIE 7812:781206

    Article  Google Scholar 

  23. Kudenov MW, Jungwirth MEL, Dereniak EL, Gerhart GR (2010) White-light sagnac interferometer for snapshot multispectral imaging. Appl Opt 49(21):4067–4076

    Article  Google Scholar 

  24. Liang H (2012) Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl Phys A 106(2):309–323

    Article  Google Scholar 

  25. Lin X, Liu Y, Wu J, Dai Q (2014) Spatial-spectral encoded compressive hyperspectral imaging. ACM Trans Graph 33(6):233

    Article  Google Scholar 

  26. Lu G, Fei B (2014) Medical hyperspectral imaging: a review. J Biomed Opt 19(1):010901–010901

    Article  Google Scholar 

  27. Manakov A, Restrepo J, Klehm O, Hegedus R, Eisemann E, Seidel H-P, Ihrke I (2013) A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging. ACM Trans Graph 32:1–14

    Article  MATH  Google Scholar 

  28. Mitchell PA (1995) Hyperspectral digital imagery collection experiment (HYDICE). In: Geographic information systems, photogrammetry, and geological/geophysical remote sensing, vol 2587. International Society for Optics and Photonics, Bellingham, pp 70–95

    Chapter  Google Scholar 

  29. Mohan A, Raskar R, Tumblin J (2008) Agile spectrum imaging: programmable wavelength modulation for cameras and projectors. In: Computer graphics forum, vol 27. Blackwell Publishing Ltd., Oxford, UK, pp 709–717

    Google Scholar 

  30. Schechner YY, Nayar SK (2002) Generalized mosaicing: wide field of view multispectral imaging. IEEE Trans Pattern Anal Mach Intell 24(10):1334–1348

    Article  Google Scholar 

  31. Shimoni M, Haelterman R, Perneel C (2019) Hypersectral imaging for military and security applications: combining myriad processing and sensing techniques. IEEE Geosci Remote Sens Mag 7(2): 101–117

    Article  Google Scholar 

  32. Shogenji R, Kitamura Y, Yamada K, Miyatake S, Tanida J (2004) Multispectral imaging using compact compound optics. Opt Express 12(8):1643–1655

    Article  Google Scholar 

  33. Stoffels J, Bluekens AAJ, Jacobus MPP (1978) Color splitting prism assembly, April 11 1978. US Patent 4,084,180

    Google Scholar 

  34. Stuart MB, Mcgonigle AJS, Willmott JR (2019) Hyperspectral imaging in environmental monitoring: a review of recent developments and technological advances in compact field deployable systems. Sensors 19(14):3071

    Article  Google Scholar 

  35. Tittl A, Leitis A, Liu M, Yesilkoy F, Choi D-Y, Neshev DN, Kivshar YS, Altug H (2018) Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360(6393):1105–1109

    Article  MathSciNet  MATH  Google Scholar 

  36. Van Der Meer FD, Van Der Werff H, Van Ruitenbeek FJA, Hecker CA, Bakker WH, Noomen M, Van Der Meijde M, Carranza EJM, De Smeth JB, Woldai T (2012) Multi – and hyperspectral geologic remote sensing : a review. Int J Appl Earth Obs Geoinf 14(1):112–128

    Article  Google Scholar 

  37. Wagadarikar A, John R, Willett R, Brady D (2008) Single disperser design for coded aperture snapshot spectral imaging. Appl Opt 47(10):B44–B51

    Article  Google Scholar 

  38. Wang L, Xiong Z, Shi G, Wu F, Zeng W (2016) Adaptive nonlocal sparse representation for dual-camera compressive hyperspectral imaging. IEEE Trans Pattern Anal Mach Intell 39(10):2104–2111

    Article  Google Scholar 

  39. Wang YW, Reder NP, Kang S, Glaser AK, Liu JTC (2017) Multiplexed optical imaging of tumor-directed nanoparticles: a review of imaging systems and approaches. Nanotheranostics 1(4):369

    Article  Google Scholar 

  40. Wang L, Xiong Z, Huang H, Shi G, Wu F, Zeng W (2018) High-speed hyperspectral video acquisition by combining nyquist and compressive sampling. IEEE Trans Pattern Anal Mach Intell 41(4):857–870

    Article  Google Scholar 

  41. West M, Grossmann J, Galvan C (2019) Commercial snapshot spectral imaging: the art of the possible

    Google Scholar 

  42. Yang Z, Albrow-Owen T, Cui H, Alexander-Webber J, Gu F, Wang X, Wu T-C, Zhuge M, Williams C, Wang P et al (2019) Single-nanowire spectrometers. Science 365(6457):1017–1020

    Article  Google Scholar 

  43. Yesilkoy F, Arvelo ER, Jahani Y, Liu M, Tittl A, Cevher V, Kivshar Y, Altug H (2019) Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat Photon 13(6):390–396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Cao .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cao, X. (2021). Hyperspectral/Multispectral Imaging. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_841-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_841-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics