Skip to main content

High Dynamic Range Imaging

  • Living reference work entry
  • First Online:
Computer Vision

Synonyms

Wide dynamic range imaging

Related Concepts

Definition

High dynamic range (HDR) imaging comprises a range of techniques for capturing, storing, editing, transmitting, and displaying images and video with an extended range of values between black and white, compared with traditional imaging techniques. This means that HDR images can be better representations of real scenes than conventional photographs, bringing associated enhanced realism and visual quality.

Introduction

Light levels to which humans are routinely exposed range from dim starlight to bright sunlight. While human vision cannot resolve detail over this enormous range simultaneously, through adaptive processes active in the visual system, humans can interpret and navigate through scenes that range from 10−6 to 108 cdm 2 [1]. This represents a range of illumination spanning around...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    See http://www.openexr.com/

  2. 2.

    See https://www.oscars.org/science-technology/aces/aces-documentation

References

  1. Hood DC, Finkelstein MA (1986) Sensitivity to light. In: Boff KR, Kaufman LR, Thomas JP (eds) Handbook of perception and human performance. Wiley, New York

    Google Scholar 

  2. Kunkel T, Reinhard E (2010) A reassessment of the simultaneous dynamic range of the human visual system. In: Proceedings of the 7th symposium on applied perception in graphics and visualization. APGV ’10. ACM, New York, pp 17–24

    Google Scholar 

  3. ITU-R (2015) Recommendation ITU-R BT.2020-2, parameter values for ultra-high definition television systems for production and international programme exchange

    Google Scholar 

  4. Vangorp P, Mantiuk RK, Bazyluk B, Myszkowski K, Mantiuk R, Watt SJ, Seidel HP (2014) Depth from HDR: depth induction or increased realism? In: Proceedings of the ACM symposium on applied perception, pp 71–78

    Google Scholar 

  5. Oppenheim AV, Schafer R, Stockham T (1968) Nonlinear filtering of multiplied and convolved signals. Proc IEEE 56(8):1264–1291

    Article  Google Scholar 

  6. Stockham T (1972) Image processing in the context of a visual model. Proc IEEE 60(7):828–842

    Article  Google Scholar 

  7. Miller NJ, Ngai PY, Miller DD (1984) The application of computer graphics in lighting design. J IES 14:6–26

    Google Scholar 

  8. Tumblin J, Rushmeier H (1993) Tone reproduction for computer generated images. IEEE Comput Graph Appl 13(6):42–48

    Article  Google Scholar 

  9. Ward GJ (1994) The radiance lighting simulation and rendering system. In: Proceedings of the 21st annual conference on Computer graphics and interactive techniques. SIGGRAPH ’94. ACM, New York, pp 459–472

    Google Scholar 

  10. Debevec P, Malik J (1997) Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH ’97: proceedings of the 24th annual conference on computer graphics and interactive techniques. ACM, New York, pp 369–378

    Chapter  Google Scholar 

  11. Debevec P (1998) Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with illumination and high dynamic range photography. In: SIGGRAPH 98 conference proceedings. Annual conference series, pp 45–50

    Google Scholar 

  12. Ashikhmin M (2002) A tone mapping algorithm for high contrast images. In: Proceedings of 13th Eurographics workshop on rendering, pp 145–155

    Google Scholar 

  13. Durand F, Dorsey J (2002) Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans Graph 21(3):257–266

    Article  Google Scholar 

  14. Fattal R, Lischinski D, Werman M (2002) Gradient domain high dynamic range compression. ACM Trans Graph 21(3):249–256

    Article  Google Scholar 

  15. Reinhard E, Stark M, Shirley P, Ferwerda J (2002) Photographic tone reproduction for digital images. ACM Trans Graph 21(3):267–276

    Article  Google Scholar 

  16. Seetzen H, Whitehead LA, Ward G (2003) A high dynamic range display using low and high resolution modulators. In: The society for information display digest

    Book  Google Scholar 

  17. Tocci MD, Kiser C, Tocci N, Sen P (2011) A versatile HDR video production system. ACM Trans Graph 30(4):41

    Article  Google Scholar 

  18. SMPTE (2014) ST 2084:2014 – SMPTE standard - high dynamic range electro-optical transfer function of mastering reference displays

    Google Scholar 

  19. ARIB STD-B67 (2015) Essential parameter values for the extended image dynamic range television (eidrtv) system for programme production

    Google Scholar 

  20. ITU-R (2016) Recommendation ITU-R BT.2100, image parameter values for high dynamic range television for use in production and international programme exchange

    Google Scholar 

  21. Damberg G, Gregson J, Heidrich W (2016) High brightness HDR projection using dynamic freeform lensing. ACM Trans Graph 35(3):24

    Article  Google Scholar 

  22. Fairchild MD (2007) The HDR photographic survey. In: Proceedings of the fifteenth color imaging conference: color science and engineering systems, technologies, and applications, vol 15, The Society for Imaging Science and Technology, pp 233–238

    Google Scholar 

  23. Froehlich J, Grandinetti S, Eberhardt B, Walter S, Schilling A, Brendel H (2014) Creating cinematic wide gamut HDR-video for the evaluation of tone mapping operators and HDR-displays. In: Proceedings SPIE. Volume 9023. 9023–9023–10

    Google Scholar 

  24. ITU-R (2018) Report ITU-R BT.2245-5, HDTV and UHDTV including HDR-TV test materials for assessment of picture quality

    Google Scholar 

  25. Akyüz AO, Reinhard E (2007) Noise reduction in high dynamic range imaging. J Vis Commun Image Represent 18(5):266–276

    Article  Google Scholar 

  26. Ward G (2003) Fast, robust image registration for compositing high dynamic range photographs from hand-held exposures. J Graph Tools 8(2):17–30

    Article  Google Scholar 

  27. Khan E, Akyuz A, Reinhard E (2006) Ghost removal in high dynamic range images. In: IEEE International conference on image processing. IEEE Computer Society, Washington, DC, pp 2005–2008

    Google Scholar 

  28. Granados M, Tompkin J, Kim KI, Theobalt C (2013) Automatic noise modeling for ghost-free HDR reconstruction. ACM Trans Graph 32(6):201

    Article  Google Scholar 

  29. Mertens T, Kautz J, van Reeth F (2007) Exposure fusion. In: IEEE Pacific conference on computer graphics and applications, pp 382–390

    Google Scholar 

  30. Reinhard E, Heidrich W, Debevec P, Pattanaik S, Ward G, Myszkowski K (2010) High dynamic range imaging: acquisition, display and image-based lighting, 2nd edn. Morgan Kaufmann

    Google Scholar 

  31. Banterle F, Ledda P, Debattista K, Chalmers A (2006) Inverse tone mapping. In: GRAPHITE ’06: proceedings of the 4th international conference on computer graphics and interactive techniques in Australasia and Southeast Asia, pp 349–356

    Google Scholar 

  32. van Hateren JH (2006) Encoding of high dynamic range video with a model of human cones. ACM Trans Graph 25(4):1380–1399

    Article  Google Scholar 

  33. McCann JJ, Rizzi A (2011) The art and science of HDR imaging, vol 26. Wiley

    Book  Google Scholar 

  34. Fairchild MD, Johnson GM (2002) Meet iCAM: an image color appearance model. In: Proceedings of the 10th IS&T/SID color imaging conference, Scottsdale, pp 33–38

    Google Scholar 

  35. Kuang J, Fairchild MD (2007) iCAM06, HDR, and image appearance. In: Proceedings of the 15th IS&T/SID color imaging conference, pp 249–254

    Google Scholar 

  36. Reinhard E, Pouli T, Kunkel T, Long B, Ballestad A, Damberg G (2012) Calibrated image appearance reproduction. ACM Trans Graph 31(6):201

    Article  Google Scholar 

  37. Mantiuk R, Daly S, Kerofsky L (2008) Display adaptive tone mapping. ACM Trans Graph 27(3):68

    Article  Google Scholar 

  38. Ward G, Rushmeier H, Piatko C (1997) A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans Vis Comput Graph 3(4):291–306

    Article  Google Scholar 

  39. Narwaria M, Mantiuk R, Da Silva MP, Le Callet P (2015) HDR-VDP-2.2: a calibrated method for objective quality prediction of high-dynamic range and standard images. J Electron Imaging 24(1):010501

    Google Scholar 

  40. Aydın TO, Čadík M, Myszkowski K, Seidel HP (2010) Video quality assessment for computer graphics applications. ACM Trans Graph 29(6):161

    Article  Google Scholar 

  41. Yeganeh H, Wang Z (2013) Objective quality assessment of tone-mapped images. IEEE Trans Image Process 22(2):657–667

    Article  MathSciNet  MATH  Google Scholar 

  42. Kainz F, Bogart R, Hess D (2003) The OpenEXR image file format. In: SIGGRAPH technical sketches

    Google Scholar 

  43. ISO/IEC 18477-2:2016 (2016) Information technology – Scalable compression and coding of continuous-tone still images – Part 2: Coding of high dynamic range imaging

    Google Scholar 

  44. ISO/IEC 29199-2:2012 (2012) Information technology – JPEG XR image coding system – Part 2: Image coding specification

    Google Scholar 

  45. ITU-R (2018) Report ITU-R BT.2408-1, operational practices in HDR television production

    Google Scholar 

  46. Miller S, Nezamabadi M, Daly S (2013) Perceptual signal coding for more efficient usage of bit codes. SMPTE Motion Imaging J 122(4):52–59

    Article  Google Scholar 

  47. Borer T (2014) Non-linear opto-electrical transfer functions for high dynamic range television. Technical Report WHP 283, BBC

    Google Scholar 

  48. François E, van de Kerkhof L (2016) A single-layer HDR video coding framework with SDR compatibility. In: International broadcasting convention

    Book  Google Scholar 

  49. ETSI TS 103 433 (2016) High-performance single layer directly standard dynamic range (SDR) compatible high dynamic range (HDR) system for use in consumer electronics devices (SL-HDR1)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Reinhard .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Reinhard, E. (2020). High Dynamic Range Imaging. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_843-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_843-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics