Skip to main content

Active Recognition

  • Living reference work entry
  • First Online:
Computer Vision

Synonyms

Active computer vision; Active object recognition; Active perception

Related Concepts

Definition

Active Recognition is the task of processing visual information in order to determine the presence and identity of a particular element in a scene by employing an agent that knows why it wishes to achieve that recognition, chooses what to sense toward that goal, and determines how, when, and where to execute the sensing and recognition actions. Some methods have been termed active if they emit or project signals whose reflections back to the sensor play a role in the processing of visual information. Others emphasize that processing requires image sequences rather than a static image, in a way such that dynamic control of imaging geometry is not explicitly considered. These methods are not part of Active Recognition as described here, and the discussion will focus only on visible light camera sensors.

Background

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nilsson NJ (1969) A mobile automaton: an application of artificial intelligence techniques. SRI International Menlo Park, CA Artificial Intelligence Center

    Book  Google Scholar 

  2. Tenenbaum JM (1970) Accommodation in computer vision. Ph.D. Thesis, Computer Science Department Report, No.CS182, Stanford University, Stanford, Oct 1970

    Google Scholar 

  3. Barrow H, Popplestone R (1971) Relational descriptions in picture processing. In: Meltzer B, Michie D (eds) Machine intelligence, vol 6. Edinburgh University Press, pp 377–396

    Google Scholar 

  4. Bajcsy R (1988) Active perception. Proc IEEE 76(8):966–1005

    Article  Google Scholar 

  5. Aloimonos J, Weiss I, Bandyopadhyay A (1988) Active vision. Int J Comput Vis 1(4):333–356

    Article  Google Scholar 

  6. Bajcsy R, Aloimonos Y, Tsotsos JK (2018) Revisiting active perception. Auton Robot 42(2):177–196

    Article  Google Scholar 

  7. Ballard D (1991) Animate vision. Artif Intell 48(1):57–86

    Article  MathSciNet  Google Scholar 

  8. Tsotsos JK (1980) A framework for visual motion understanding. PhD Thesis, Department of Computer Science, CSRG TR-114, University of Toronto

    Google Scholar 

  9. Tsotsos JK (2011) A computational perspective on visual attention. MIT Press, Cambridge, MA

    Book  Google Scholar 

  10. Wilkes D, Tsotsos JK (1992) Active object recognition. In: Proceedings of computer vision and pattern recognition, Champaign, 15–18 June 1992, pp 136–141

    Google Scholar 

  11. Dickinson S, Wilkes D, Tsotsos JK (1999) A computational model of view degeneracy. IEEE Trans Pattern Anal Mach Intell 21(8):673–689

    Article  Google Scholar 

  12. Ikeuchi K, Hebert M (1992) Task oriented vision. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, vol 3, 7–10 July 1992, pp 2187–2194

    Google Scholar 

  13. Dickinson S, Christensen H, Tsotsos JK, Olofsson G (1994) Active object recognition integrating attention and viewpoint control. In: Proceedings of European conference on computer vision, Stockholm, Sweden, pp 2–14

    Google Scholar 

  14. Rasouli A, Tsotsos JK (2015) Integrating three mechanisms of visual attention for active visual search. In: 8th international symposium on attention in cognitive systems, Hamburg

    Google Scholar 

  15. Liu C-H, Tsai W-H (1990) 3D curved object recognition from multiple 2D camera views. Comput Vis Graph Image Process 50:177–187

    Article  Google Scholar 

  16. Cheng R, Wang Z, Fragkiadaki K (2018) Geometry-aware recurrent neural networks for active visual recognition. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N and Garnett R (eds) Advances in neural information processing systems, Inc., Montreal, Canada, pp 5086–5096

    Google Scholar 

  17. Crowley JL, Krotkov E, Brown C (1992) Active computer vision: a tutorial. Presented at IEEE international conference on robotics and automation, Nice, 11 May

    Google Scholar 

  18. Blake A, Yuille A (1992) Active vision. MIT Press, Cambridge, MA,

    Google Scholar 

  19. Tistarelli M, Sandini G (1992). Dynamic aspects in active vision. CVGIP: Image Underst 56(1):108–129

    Article  MATH  Google Scholar 

  20. Sood AK, Wechsler H (eds) (2012) Active perception and robot vision, vol 83. NATO ASI series. Springer, New York, NY

    Google Scholar 

  21. Aloimonos Y (ed) (1993) Active perception. Psychology Press, Taylor & Francis Group, Abingdon,

    Google Scholar 

  22. Christensen HI, Bowyer KW, Bunke H (eds) (1993) Active robot vision: camera heads, model based navigation and reactive control, vol 7. World Scientific Publishers, Singapore

    MATH  Google Scholar 

  23. Crowley JL, Christensen HI (1995) Integration and control of active visual processes. In: Proceedings of IROS 95, Pittsburgh

    Google Scholar 

  24. Vernon D (2008) Cognitive vision: the case for embodied perception. Image Vis Comput 26(1):127–140

    Article  Google Scholar 

  25. Chen S, Li Y, Kwok NM (2011) Active vision in robotic systems: a survey of recent developments. Int J Robot Res 30(11):1343–1377

    Article  Google Scholar 

  26. Andreopoulos A, Tsotsos JK (2013) 50 years of object recognition: directions forward. Comput Vis Image Underst 117:827–891

    Article  Google Scholar 

  27. Eklundh JO (2014) Mobile observers. In: Ikeuchi K (ed) Computer vision. Springer, Boston, pp 486–488

    Chapter  Google Scholar 

  28. Findlay JM, Gilchrist ID (2003) Active vision: the psychology of looking and seeing. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  29. Liversedge S, Gilchrist I, Everling S (eds) (2011) The Oxford handbook of eye movements. Oxford University Press, Oxford, UK

    Google Scholar 

  30. Tsotsos JK (1992) On the relative complexity of passive vs active visual search. Int J Comput Vis 7(2):127–141

    Article  Google Scholar 

  31. Ye Y, Tsotsos JK (1996) 3D sensor planning: its formulation and complexity. In: Kautz H, Selman B (eds) Proceedings of 4th international symposium on artificial intelligence and mathematics, Fort Lauderdale, 3–5 Jan

    Google Scholar 

  32. Ye Y, Tsotsos JK (1999) Sensor planning for object search. Comput Vis Image Underst 73(2):145–168

    Article  Google Scholar 

  33. Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. Henry Holt and Co, New York

    Google Scholar 

  34. Tsotsos JK (1988) A “complexity level” analysis of immediate vision. Int J Comput Vis 2:303–320

    Article  Google Scholar 

  35. Andreopoulos A, Hasler S, Wersing H, Janssen H, Tsotsos JK, Korner E (2011) Active 3D object localization using a humanoid robot. IEEE Trans Robot 27(1):47–64

    Article  Google Scholar 

  36. Shubina K, Tsotsos JK (2010) Visual search for an object in a 3D environment using a mobile robot. Comput Vis Image Underst 114:535–547

    Article  Google Scholar 

  37. Aydemir A, Pronobis A, Göbelbecker M, Jensfelt P (2013) Active visual object search in unknown environments using uncertain semantics. IEEE Trans Robot 29(4):986–1002

    Article  Google Scholar 

  38. Rasouli A, Tsotsos JK (2016) Sensor planning for 3D visual search with task constraints. In: 2016 13th conference on computer and robot vision, pp 37–44

    Google Scholar 

  39. Terzopoluos D, Rabie T (1997) Animat vision: active vision in artificial animals. Videre: J Comput Vis Res 1(1):2–19

    Google Scholar 

  40. Ammirato P, Poirson P, Park E, Košecká J, Berg AC (2017) A dataset for developing and benchmarking active vision. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1378–1385

    Google Scholar 

  41. Xia F, Zamir AR, He Z, Sax A, Malik J, Savarese S (2018) Gibson Env: real-world perception for embodied agents. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9068–9079

    Google Scholar 

  42. Solbach MD, Voland S, Edmonds J, Tsotsos JK (2018) Random polyhedral scenes: an image generator for active vision system experiments, arXiv:1803.10100

    Google Scholar 

  43. Huber S, Selby B, Tripp B (2018) OREO: an open-hardware robotic head that supports practical saccades and accommodation. IEEE Robot Autom Lett 3(3):2640–2645

    Article  Google Scholar 

  44. Andreopoulos A, Tsotsos JK (2012) On sensor bias in experimental methods for comparing interest point, saliency and recognition algorithms. IEEE Trans Pattern Anal Mach Intell 34(1):110–126

    Article  Google Scholar 

  45. Andreopoulos A, Tsotsos JK (2013) A computational learning theory of active object recognition under uncertainty. Int J Comput Vis 101(1):95–142

    Article  MathSciNet  MATH  Google Scholar 

  46. Brynjolfsson E, Mitchell T (2017) What can machine learning do? Workforce implications. Science 358(6370):1530–1534

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Tsotsos .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tsotsos, J.K. (2020). Active Recognition. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_866-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_866-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics