Skip to main content

Lie Algebra

  • Living reference work entry
  • First Online:
Computer Vision

Related Concepts

Lie groups Rigid motions Geometric transformations Intrinsic methods

Definitions and Properties

Lie algebras can be interpreted in a number of ways: the set of infinitesimal transformations, tangent space about the identity element of a group, and a linear space with special properties. Formally, a Lie algebra (denoted \(\mathfrak {g}\)) is a vector space equipped with a bilinear, non-associative map \(\left [.,. \right ] : \mathfrak {g} \times \mathfrak {g} \rightarrow \mathfrak {g} \) known as the Lie bracket. The Lie bracket satisfies the following relationships:

$$\displaystyle \begin{aligned} \begin{array}{rcl} {} [\mathbf{x},\mathbf{y}] &\displaystyle =&\displaystyle -[\mathbf{y},\mathbf{x}] \,(\text{\textit{anti-symmetry}}), \\ {} [\mathbf{x}+\mathbf{y},\mathbf{z}] &\displaystyle =&\displaystyle [\mathbf{x},\mathbf{z}] + [\mathbf{y},\mathbf{z}] \, (\textit{bilinearity}),\\ {} [\mathbf{x},{[\mathbf{y},\mathbf{z}]}] &\displaystyle +&\displaystyle...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Park FC (1995) Distance metrics on the rigid-body motions with applications to mechanism design. J Mech Des 117(1):48–54

    Article  Google Scholar 

  2. Govindu VM (2004) Lie-algebraic averaging for globally consistent motion estimation. In: CVPR 2004

    Google Scholar 

  3. Manton J (2004) A globally convergent numerical algorithm for computing the centre of mass on compact lie groups. In: ICARCV

    Book  Google Scholar 

  4. Chatterjee A, Govindu VM (2013) Efficient and robust large-scale rotation averaging. In: ICCV, pp 521–528

    Google Scholar 

  5. Chatterjee A, Govindu VM (2018) Robust relative rotation averaging. IEEE Trans Pattern Anal Mach Intell 40(4):958–972

    Article  Google Scholar 

  6. Thomas Fletcher P, Lu C, Pizer SM, Joshi S (2004) Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans Med Imaging 23(8):995–1005

    Article  Google Scholar 

  7. Freifeld O, Black MJ (2012) Lie bodies: a manifold representation of 3D human shape. In: European conference on computer vision, pp 1–14

    Google Scholar 

  8. Drummond T, Cipolla R (2000) Application of lie algebras to visual servoing. Int J Comput Vis 37(1):21–41

    Article  Google Scholar 

  9. Benhimane S, Malis E (2007) Homography-based 2D visual tracking and servoing. Int J Robot Res 26(7):661–676

    Article  Google Scholar 

  10. Tuzel O, Porikli FM, Meer P et al (2008) Learning on lie groups for invariant detection and tracking. In: CVPR

    Book  Google Scholar 

  11. Park FC, Ravani B (1997) Smooth invariant interpolation of rotations. ACM Trans Graph 16(3):277–295

    Article  Google Scholar 

  12. Marthinsen A (1999) Interpolation in lie groups. SIAM J Numer Anal 37(1):269–285

    Article  MathSciNet  Google Scholar 

  13. Belta C, Kumar V (2002) Euclidean metrics for motion generation on se (3). Proc Inst Mech Eng Part C 216(1):47–60

    Article  Google Scholar 

  14. Altafini C (2001) The de casteljau algorithm on se (3). In: Nonlinear control in the year 2000. Springer, London, pp 23–34

    MATH  Google Scholar 

  15. Baker A (2012) Matrix groups: an introduction to Lie group theory. Springer Science & Business Media

    Google Scholar 

  16. Tapp K (2016) Matrix groups for undergraduates, vol 79. American Mathematical Society, Providence

    Book  Google Scholar 

  17. Hall B (2015) Lie groups, lie algebras, and representations: an elementary introduction, vol 222. Springer, Cham

    Book  Google Scholar 

  18. Stillwell J (2008) Naive lie theory. Springer Science & Business Media, New York

    Book  Google Scholar 

  19. Kanatani K (1990) Group theoretic methods in image understanding. Springer, Berlin

    Book  Google Scholar 

  20. Selig JM (2013) Geometrical methods in robotics. Springer, New York

    MATH  Google Scholar 

  21. Chirikjian GS (2011) Stochastic models, information theory, and lie groups, vol 2. Analytic methods and modern applications. Birkhauser, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venu Madhav Govindu .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Govindu, V.M. (2020). Lie Algebra. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_871-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_871-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics