Skip to main content

CFD Simulations for Airfoil Polars

  • Living reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics

Abstract

In this chapter on CFD simulations for airfoil polars, we focus on studies that are relevant to wind turbine airfoils, which have been investigated at reasonably high Reynolds numbers (i.e., Re>˜1×106). We specifically focus on topics such as solution approaches, grid characteristics, effects of turbulence models, near/post-stall behavior predictions, transition modeling, and Reynolds number effects. We include a sample group of selected studies covering relevant airfoils in wind energy research. More research papers can be found using the references given in this paper as a starting point. The main objective is to provide some guidance to the reader regarding how to set up a good CFD simulation to obtain airfoil polars by giving relevant examples from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott IH, Von Doenhoff AE (1959) Theory of wing sections, including a summary of airfoil data. Dover Publications

    Google Scholar 

  • Althaus D, Wortmann FX (1981) Stuttgarter Profilkatalog 1. Technical Report, Vieweg, Braunschweig

    Google Scholar 

  • Asada K, Kawai S (2018) Large-Eddy Simulation of Airfoil Flow Near Stall Condition at Reynolds number 2.1 ×106. Phys Fluids 30:085103

    Google Scholar 

  • Bak C, Zahle F, Bitsche R, Kim T, Yde A, Henriksen LC, Hansen MH, Blasques JPAA, Gaunaa M, Natarajan A (2013) The DTU 10-MW Reference Wind Turbine, DTU: Lyngby

    Google Scholar 

  • Balakumar P (2017) Direct numerical simulation of flows over an NACA-0012 airfoil at low and moderate reynolds numbers. In: AIAA-2017-3978 47th AIAA Fluid Dynamics Conference, AIAA Aviation Forum, 5–9 June, Denver

    Google Scholar 

  • Balakumar P (2020) Wall-Modeled LES for flows over an NACA-0012 Airfoil. In: AIAA fluid dynamics conference, SciTech, Jan 6–10th, Orlando

    Google Scholar 

  • Baldacchino D, Manolesos M, Ferreira C, Gonzalez Salcedo A, Aparicio M, Chaviaropoulos T, Diakakis K, Florentie L, Garcia NR, Papadakis G, Sorensen NN, Timmer N, Troldborg N, Voutsinas S, van Zuijlen A (2016) Experimental benchmark and code validation for airfoils equipped with passive vortex generators, The science of making torque from wind (TORQUE 2016). J Phys Conf Ser 753:022002

    Article  Google Scholar 

  • Bangga G, Kusumadewi T, Hutomo G, Sabila A, Syawitri T, Setiadi H, Faisal M, Wiranegara R, Hendranata Y, Lastomo D, Putra L, Kristiadi S (2018a) Improving a two-equation eddy-viscosity turbulence model to predict the aerodynamic performance of thick wind turbine airfoils. In: International conference on mathematics: pure, applied and computation, IOP Conf. Series: Journal of Physics: Conf. Series 974 012019. https://doi.org/10.1088/1742-6596/974/1/012019

  • Bangga G, Lutz T, Krämer E (2018b) Active separation control on a very thick wind turbine airfoil – a URANS and DDES perspective, The science of making torque from wind (TORQUE 2018). J Phys Conf Ser 1037:022025. https://doi.org/10.1088/1742-6596/1037/2/022025

    Article  Google Scholar 

  • Barone M, Berg D (2009) Aerodynamic and aeroacoustic properties of a flatback airfoil: an update. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition (p 271), 5–8 Jan 2009, Orlando, Florida. https://doi.org/10.2514/6.2009-271

  • Bartl J, Sætran L (2017) Blind test comparison of the performance and wake flow between two in-line wind turbines exposed to different turbulent inflow conditions. Wind Energy Sci 2:55–76

    Article  Google Scholar 

  • Bertagnolio F, Sørensen NN, Johansen J, Fuglsang P (2001) Wind turbine airfoil catalogue. Denmark. Forskningscenter Risoe. Risoe-R, No. 1280(EN)

    Google Scholar 

  • Björk A (1990) Coordinates and Calculations for the FFA-Wl-xxx, FFA-W2-xxx and FFA-W3-xxx Series of Airfoils for Horizontal Axis Wind Turbines, FFA TN 1990-15, The Aeronautical Research Institute of Sweden

    Google Scholar 

  • Bortolotti P, Tarries HC, Dykes K, Merz K, Sethuraman L, Verelst D, Zahle F (2019) IEA Wind Task 37 on systems engineering in wind energy WP2.1 reference wind turbines, IEA Wind TCP Task 37 Technical Report, May 2019

    Google Scholar 

  • Campobasso MS, Zanon A, Foerster M, Fraysse F, Bonfiglioli A (2008) CFD modelling of wind turbine airfoil aerodynamics, 63th ATI national congress, Energia per lo sviluppo sostenibile, 23–26 Sept 2008, Palermo

    Google Scholar 

  • Chen KK, Thyson NA (1971) Extensions of emmons spot theory to flows on blunt bodies. AIAA J 9:5

    Google Scholar 

  • Colonia S, Leble V, Steijl R, Barakos G (2016) Calibration of the γ-equation transition model for high reynolds flows at low mach. J Phys Conf Ser 753:082027

    Article  Google Scholar 

  • Dahl KS, Fuglsang P (1998) Design of the wind turbine airfoil family RISØ-A-XX. Denmark. Forskningscenter Risoe. Risoe-R, No. 1024(EN)

    Google Scholar 

  • Dhert T, Ashuri T, Chen S, Martins JRRA (2017) Aerodynamic shape optimization of wind turbine blades using a Reynolds-averaged Navier–Stokes model and an adjoint method. Wind Energy 20(5):909–926

    Article  Google Scholar 

  • Drela M (1989) XFOIL: an analysis and design system for low Reynolds number airfoils. In: Conference on low reynolds number aerodynamics, University of Notre Dame

    Google Scholar 

  • Drela M, Giles MB (1987) Viscous-inviscid analysis of transonic and low reynolds number airfoils. AIAA J 25(10):1347–1355

    Article  Google Scholar 

  • Evan G, Rinker J, Sethuraman L, Zahle F, Anderson B, Barter G, Abbas N, Meng F, Bortolotti P, Skrzypinski W, Scott G, Feil R, Bredmose H, Dykes K, Shields M, Allen C, Viselli A (2020) Definition of the IEA Wind 15-Megawatt offshore reference wind turbine, IEA Wind TCP Task 37, NREL/TP-5000-75698, Mar 2020

    Google Scholar 

  • Ferreira C, Gonzalez A, Baldacchino D, Aparicio M, Gomez S, Munduate X, Garcia NR, Sorensen JN, Jost E, Knecht S, Lutz T, Chassapogiannis P, Diakakis K, Papadakis G, Voutsinas S, Prospathopoulos J, Gillebaart T, van Zuijlen A (2016) Results of the AVATAR project for the validation of 2-D aerodynamic models with experimental data of the DU95W180 airfoil with unsteady flap, the science of making torque from wind (TORQUE 2016), 5–7 October 2016, Munich, Germany. Journal of Physics: Conference Series (Vol. 753, No. 2, p. 022006). IOP Publishing. https://doi.org/10.1088/1742-6596/753/2/022006

  • Freudenrich K, Kaiser K, Schaffarczyk AP, Winkler H, Stahl B (2004) Reynolds number and roughness effects on thick airfoils for wind turbines. Wind Eng 28(5):529–546

    Article  Google Scholar 

  • Gao L, Zhang H, Liu Y, Han S (2015) Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines. Renew Energy 76:303–311. https://doi.org/10.1016/j.renene.2014.11.043

    Article  Google Scholar 

  • Ge M, Tian D, Deng Y (2016) Reynolds number effect on the optimization of a wind turbine blade for maximum aerodynamic efficieny. ASCE J Energy Eng 142(1):04014056. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000254

    Article  Google Scholar 

  • Giguère P, Selig MS (1999) Design of a tapered and twisted blade for the NREL combined experiment rotor march 1998 – March 1999, NREL/SR-500-26173, Apr 1999. National Renewable Energy Laboratory, Golden, CO (US)

    Google Scholar 

  • Götten F, Havermann M, Braun C, Marino M, Bil C (2020) Airfoil drag at low- to medium reynolds numbers a novel estimation method. AIAA J 58(7): 2791–2805

    Article  Google Scholar 

  • Grasso F (2012) Design of a family of advanced airfoils for low wind class turbines. EWEA, Torque2012, 9–11 Oct 2012, Oldenburg

    Google Scholar 

  • Grasso F (2014) ECN airfoils for large offshore wind turbines: design and wind tunnel testing, EWEA 2014, Barcelona

    Google Scholar 

  • Griffin DA (2001) WindPACT turbine design scaling studies technical area 1—composite blades for 80- to 120-meter rotor. NREL/SR-599-29492

    Google Scholar 

  • Griffith DT, Ashwill TD (2011) The sandia 100-meter all-glass baseline wind turbine blade: SNL100-00, SAND2011-3779, June 2011

    Google Scholar 

  • Hall ZM (2018) Assessment of transition modeling capabilities in NASA’s OVERFLOW CFD Code Version 2.2m, AIAA SciTech Forum Aerospace Sciences Meeting, 8–12 Jan, Kissimmee

    Google Scholar 

  • Hand MM, Simms DA, Fingersh LJ, Jager DW, Cotrell JR, Schreck S, Larwood SM (2001) Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns, NREL/TP-500-29955, Dec 2001

    Google Scholar 

  • Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development, NREL/TP-500-38060, Feb 2009

    Book  Google Scholar 

  • Langtry R, Menter F (2009) Correlation based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J 47(12):2894–2906

    Article  Google Scholar 

  • Lehmkuhl O, Calafell J, Rodriguez I, Oliva A (2014) Large Eddy simulations of wind turbine dedicated airfoils at high reynolds numbers, Hölling M, Peinke J, Ivanell S (eds) Research topics in wind energy 2: wind energy-impact of turbulence. Springer, Berlin/Heidelberg

    Google Scholar 

  • Malcolm DJ, Hansen AC (2006) WindPACT turbine rotor design study: June 2000– June 2002 (Revised), NREL/SR-500-32495, Apr 2006

    Book  Google Scholar 

  • Manolesos M, Papadakis G, Voutsinas S (2014) An experimental and numerical investigation on the formation of stall-cells on airfoils. The Science of Making Torque From Wind 2012 (TORQUE 2012), 9–11 October 2012, Oldenburg, Germany. Journal of Physics: Conference Series (Vol. 555, No. 1, p. 012068). IOP Publishing. https://doi.org/10.1088/1742-6596/555/1/012068

  • Menter FR (1993) Zonal two-equations k-w turbulence models for aerodynamic flows. AIAA Paper 93-2906

    Google Scholar 

  • Michel (1951) Etude de la transition sur les profils d’aile; Etablissement d’un critere de determination du point de transition et calcul de la trainee de profil incompressible, Tech. Report 1/1578A, ONERA

    Google Scholar 

  • Ge M, Tian D, Deng Y (2016) Reynolds number effect on the optimization of a wind turbine blade for maximum aerodynamic efficiency. ASCE J Energy Eng 142(1):04014056

    Article  Google Scholar 

  • Palacios F, Economon TD, Aranake AC, Copeland SR, Lonkar AK, Lukaczyk TW, Manosalvas DE, Naik KR, Padron AS, Tracey B, Variyar A, Alonso JJ (2014) Stanford University Unstructured (SU2): open-source analysis and design technology for turbulent flows. In: 52nd Aerospace Sciences Meeting, National Harbor, Maryland, 2014. AIAA 2014–0243. https://doi.org/10.2514/6.2014-0243

  • Palmer FS, Donisi L, Pindado S, Ortega OG, Gutiérrez MO (2018) Towards an airfoil catalogue for wind turbine blades at IDR/UPM Institute with OpenFOAM. J Aerosp Eng Mech 2(1):121–133. https://doi.org/10.36959/422/432

    Google Scholar 

  • Parezanovic V, Rasuo B, Adzic M (2006) Design of airfoils for wind turbine blades. In: The French-Serbian European Summer University: Renewable Energy Sources and Environment Multidisciplinary Aspect. 17–24 October 2006, Rnjačka Banja, Serbia.

    Google Scholar 

  • Petrilli JL, Paul RC, Gopalarathnam A, Frink NT (2013) A CFD Database for airfoils and wings at post-stall angles of attack. In: 31st AIAA applied aerodynamics conference, 24–27 June 2013, San Diego, CA. AIAA Paper 2013–2916, June 2013.

    Google Scholar 

  • Prospathopoulos JM, Papadakis G, Sieros G, Voutsinas SG, Chaviaropoulos TK, Diakakis K (2014) Assessment of the aerodynamic characteristics of thick airfoils in high reynolds and Moderate Ma numbers using CFD modeling. J Phys Conf Ser 524(1):012015. https://doi.org/10.1088/1742-6596/524/1/012015

    Article  Google Scholar 

  • Rahimi H, Medjroubi W, Stoevesandt B, Peinke J (2014) 2D numerical investigation of the laminar and turbulent flow over different airfoils using OpenFOAM. The Science of Making Torque From Wind 2012(TORQUE 2012), 9–11 October 2012, Oldenburg, Germany. Journal of Physics: Conference Series (Vol. 555, No. 1, p. 012070). IOP Publishing. https://doi.org/10.1088/1742-6596/555/1/012070

  • Ramanujam G, Huseyin Ozdemir H (2017) Improving airfoil lift prediction. In: AIAA SciTech Forum, Grapevine, Texas 35th Wind Energy Symposium, 9–13 Jan 2017

    Google Scholar 

  • Rinker J, Dykes K (2018) WindPACT reference wind turbines. Golden, CO: National Renewable Energy Laboratory, NREL/TP-5000-67667, Apr 2018

    Google Scholar 

  • Rogowski K, Hansen MOL, Bangga G (2020) Performance analysis of a H-Darrieus wind turbine for a series of 4-Digit NACA Airfoils. Energies 13(12):3196. https://doi.org/10.3390/en13123196

    Article  Google Scholar 

  • Rogowski K, Hansen MOL, Hansen R, Piechna J, Lichota P (2018) Detached eddy simulation model for the DU-91-W2-250 airfoil. J Phys Conf Ser 1037(2):022019. https://doi.org/10.1088/1742-6596/1037/2/022019

    Article  Google Scholar 

  • Schepers JG, Snel H (2007) Model experiments in controlled conditions. Final report, ECN-E-07-042, Feb 2007

    Google Scholar 

  • Schepers JG, Boorsma K, Sørensen N, Sieros G, Rahimi H, Heisselmann H, Jost E, Lutz T, Maeder T, Gonzalez A, Ferreira C, Stoevesandt B, Barakos G, Lampropoulos N, Croce A, Madsen J (2018) Final results from the EU project AVATAR: aerodynamic modelling of 10 MW wind turbines. In: The Science of Making Torque from Wind (TORQUE 2018), 20–22 June 2018, Milano, Italy. Journal of Physics: Conference Series (Vol. 1037, No. 2, p. 022013). IOP Publishing. https://doi.org/10.1088/1742-6596/1037/2/022013

  • Shen WZ, Zhu WJ, Fischer A, Garcia NR, Cheng JT, Chen J, Madsen J (2014) Validation of the CQU-DTU-LN1 series airfoils. In: The Science of Making Torque From Wind 2012 (TORQUE 2012), 9–11 October 2012, Oldenburg, Germany. Journal of Physics: Conference Series (Vol. 555, No. 1, p. 012093). IOP Publishing. https://doi.org/10.1088/1742-6596/555/1/012093

  • Smith AMO, Gamberoni N (1956) Transition, pressure gradient and stability theory. Douglas Aircraft Company, Long Beach, Calif. Rep. ES 26388

    Google Scholar 

  • Somers DM (1997) Design and experimental results for the S809Airfoil, NREL/SR-440-6918, Jan 1997

    Google Scholar 

  • Sørensen NN, Timmer WA (2017) CFD prediction of airfoil deep stall performance using improved delayed detached eddy simulations. In: Wind energy science conference 2017, Lyngby, June 2017

    Google Scholar 

  • Sørensen NN, Mendez B, Munoz A, Sieros G, Jost E, Lutz T, Papadakis G, Voutsinas S, Barakos GN, Colonia S, Baldacchino D, Baptista C, Ferreira C (2016) CFD code comparison for 2D airfoil flows, the science of making torque from wind (TORQUE 2016). J Phys Conf Ser 753:082019

    Article  Google Scholar 

  • Sørensen NN, Zahle F, Bak C, Vronsky T (2014) Prediction of the effect of vortex generators on airfoil performance, the science of making torque from wind 2014 (TORQUE 2014). J Phys Conf Ser 524:012019

    Article  Google Scholar 

  • Standish KJ, Van Dam CP (2003) Aerodynamic analysis of blunt trailing edge airfoils. J Sol Energy Eng 125(4):479–487

    Article  Google Scholar 

  • Tangler JL, Somers DM (1995) NREL airfoil families for HAWT’s, WINDPOWER’95, Washington D.C. Proc., pp 117–123

    Google Scholar 

  • Timmer WA, van Rooij RPJOM (2003) Summary of the Delft University wind turbine dedicated airfoils. J Sol Energy Eng 125:488–496

    Article  Google Scholar 

  • van Ingen JL (1956) A suggested semi-empirical method for the calculation of the boundary layer transition region. University of Delft, Department of Aerospace Engineering, Delft, Rep. VTH-74

    Google Scholar 

  • Van Rooij RPJOM (1996) Modification of the boundary layer calculation in RFOIL for improved airfoil stall prediction

    Google Scholar 

  • Volikas A, Konstantinos-Stefanos N (2019) Turbulence modeling investigation of airfoil designed for wind turbine applications. AIP Conf Proc 2123:020067. https://aip.scitation.org/doi/abs/10.1063/1.5116994?journalCode=apc

    Article  Google Scholar 

  • Walters KD, Cokljat D (2008) A Three-Equation Eddy viscosity model for reynolds-averaged navier stokes simulations of transitional flow. J Fluids Eng 130(12):121401

    Article  Google Scholar 

  • Wang H, Zhang B, Qiu Q, Xu X (2017) Flow control on the NREL S809 wind turbine airfoil using vortex generators. Energy 118:1210–1221. https://doi.org/10.1016/j.energy.2016.11.003

    Article  Google Scholar 

  • Zhu WJ, Shen WZ, Sørensen JN (2016) Low-noise airfoil and wind turbine design, Chapter 3. In: Wind turbines – design, control and applications. https://doi.org/10.5772/63335

  • Wortmann FX (1978) Airfoil profiles for wind turbines, Institute-Report 78-9, Stuttgart

    Google Scholar 

  • Xu H, Shen W, Zhu W, Yang H, Liu C (2014) Aerodynamic analysis of trailing edge enlarged wind turbine airfoils, the science of making torque from wind 2014 (TORQUE 2014). J Phys Conf Ser 524:012010. https://doi.org/10.1088/1742-6596/524/1/012010

    Article  Google Scholar 

  • Zahle F, Bak C, Sørensen NN, Vronsky T, Gaudern N (2014) Design of the LRP airfoil series using 2D CFD, TORQUE 2014, The science of making torque from wind 2014. J Phys Conf Ser 524:012020. https://doi.org/10.1088/1742-6596/524/1/012020

    Article  Google Scholar 

  • Zhu WJ, Shen WZ (2013) Integrated airfoil and blade design method for large wind turbines. In: Shen W (ed) Proceedings of the 2013 international conference on aerodynamics of offshore wind energy systems and wakes (ICOWES2013) Technical University of Denmark

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oğuz Uzol .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sezer-Uzol, N., Uzol, O., Orbay-Akcengiz, E. (2021). CFD Simulations for Airfoil Polars. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_12-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics