Skip to main content

Aerofoil Aerodynamics of Wind Energy Devices

  • Living reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics
  • 225 Accesses

Abstract

Dynamic stall is a complex fluid dynamics problem that occurs on an airfoil during rapid, transient motion in which the angle of attack goes beyond the static stall angle. Since the instantaneous sectional aerodynamic loads may surpass the static values, dynamic stall events often dictate the operational load range in several systems, including wind energy machines. Typically the phenomenon of dynamic stall is modelled using semi-empirical or the so-called engineering approaches, derived from 2D wind tunnel tests. However, extrapolation to wind energy machines’ behaviour must be done carefully as real conditions of DS occurrence arise as a combination of complex, interacting phenomena, including 3D aerodynamic features (e.g. due to yaw misalignment and rotational augmentation) and also blade structural vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almohammadi KM, Ingham DB, Ma L, Pourkashanian M (2015) Modeling dynamic stall of a straight blade vertical axis wind turbine. J Fluids Struct 57:144–158

    Article  Google Scholar 

  • Barlas T (2011) Active aerodynamic load control on wind turbines: aeroservoelastic modeling and wind tunnel experiments. Ph.D. Dissertation, TUDelft

    Google Scholar 

  • Bergami L (2014) Smart rotor modelling – aero-servo-elastic modeling of a smartRotor with adapptive trailing edge flaps. Springer

    Google Scholar 

  • Bertagnolio F, Sorensen N, Johansen J, Fuglsang P (2001) Wind turbine airfoil catalogue – R-1280. Risø, Technical Report

    Google Scholar 

  • Boorsma K, Schepers JG et al (2011) Final report of IEA task 29, Mexnext (phase 1), analysis of Mexico wind tunnel measurements. ECN-E-12-004, Energy Research Center of the Netherlands

    Google Scholar 

  • Bousman G (2000) Airfoil dynamic stall and rotorcraft maneuverability. NASA/TM-2000-209601

    Google Scholar 

  • Cardona JL (1984) Flow curvature and dynamic stall simulated with an aerodynamic free-vortex model for vawt. Wind Eng 8(3):135–143

    Google Scholar 

  • Carr LW, Chandrasekhara MS (1996) Compressibility effects on dynamic stall. Prog Aerosp Sci 32(6):523–573

    Article  Google Scholar 

  • Cermak JE, Horn JD (1968) Tower shadow effect. J Geophys Res 73:1869–1876

    Article  Google Scholar 

  • Chaviaropoulos P, Hansen M (2000) Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver. J Fluids Eng 122:330–336

    Article  Google Scholar 

  • Connel JR (1982) The spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system. J Solar Energy 29(5):363–375

    Article  Google Scholar 

  • Coton FN, McD Galbraith RA, Green RB (2001) The effect of wing planform shape on dynamic stall. Aeronaut J 105(1045):151–159

    Article  Google Scholar 

  • Daley DC, Jumper EJ (1984) Experimental investigation of dynamic stall for a pitching airfoil. J Aircr 21(10):831–832

    Article  Google Scholar 

  • Ferreira CS (2009) The near wake of the VAWT: 2D and 3D views of the VAWT aerodynamics. TUDelft Ph.D. Thesis

    Google Scholar 

  • Ferreira C, van Kuik G, van Bussel G, Scarano F (2009) Visualization by PIV of dynamic stall on a vertical axis wind turbine. Exp Fluids 46(1):97–108

    Article  Google Scholar 

  • Fuglsang P, Antoniou P, Bak C, Madsen H (1998) Wind tunnel test of the RISOE-1 airfoil. Risoe-R999(EN)

    Google Scholar 

  • Fujisawa N, Shibuya S (2001) Observations of dynamic stall on darrieus wind turbine blades. J Wind Eng Indus Aerodyn 89:201–214

    Article  Google Scholar 

  • Fung YC (1993) An introduction to the theory of aeroelasticity. Dover Phoenix Editions, pp407

    Google Scholar 

  • Galbraith RAM, Caton FN, Jiang D, Gilmour R (1992) Summary of pressure data for thirteen airfoils on the university of glasgow airfoil database. Glasgow University Report 9221

    Google Scholar 

  • Galbraith RAM, Coton FN, Jiang D, Gilmour R (1996) The dynamic stalling characteristics of a rectangular wing with swept tips. In: Proceedings Conference 22nd European Rotorcraft Forum

    Google Scholar 

  • Gangwani S (1984) Synthesized airfoil data method for prediction of dynamic stall and unsteady airloads. Vertica 8:93–118

    Google Scholar 

  • Gobbi G (2010) Analysis and reconstruction of dynamic-stall data from nominally two-dimensional aerofoil tests in two different wind tunnels. Ph.D. Thesis – University of Glasgow

    Google Scholar 

  • Gonzalez A, Munduate X (2007) Unsteady modelling of the oscillating S809 aerofoil and NREL phase VI parked blade using the Beddoes-Leishman dynamic stall model. J Phys Conf Ser 75(1):012020

    Article  Google Scholar 

  • Greenblatt D, Ben-Harav A, Mueller-Vahl H (2014) Dynamic stall control on a vertical-axis wind turbine using plasma actuators. AIAA J 52(2):456–462

    Article  Google Scholar 

  • Guilmineau E, Queutey P (1999) Numerical study of dynamic stall on several airfoils sections. AIAA J 37:128–130

    Article  Google Scholar 

  • Guntur S (2013) A detailed study of the rotational augmentation and dynamic stall phenomena for wind turbines. DTU Ph.D. Dissertation

    Google Scholar 

  • Guntur S, Schreck S, Sørensen N, Bergami L (2015) Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields. NREL Technical Report – TP-5000-63925

    Google Scholar 

  • Hibbs BD (1986) Hawt performance with dynamic stall. Technical Report SERI/STR-217-2732

    Google Scholar 

  • Janiszewska JM, Ramsay RR, Hoffmann MJ, Gregorek GM (1996) Effects of grit roughness and pitch oscillations on the S814 airfoil. NREL/TP-442-8161

    Google Scholar 

  • Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. NREL-TP500-38060

    Google Scholar 

  • Jonkman J et al (2021) NWTC information portal (fast). https://nwtc.nrel.gov/FAST

  • Khan M (2018) Dynamic stall modelling for wind turbines. Master Thesis – TUDelft

    Google Scholar 

  • Kramer M (1932) Increase in the maximum lift of an airplane wing due to a sudden increase in its effective angle of attack resulting from a gust. NACA Technical Memorandum No. 678

    Google Scholar 

  • Leishman J (2002) Challenges in modeling the unsteady aerodynamics of wind turbines. In: 21st ASME Wind Energy Symposium, Reno

    Google Scholar 

  • Leishman J (2006) Principles of helicopter aerodynamics. Cambridge aerospace series. Cambridge University Press

    Google Scholar 

  • Leishman J, Beddoes T (1986) A generalised model for airfoil unsteady aerodynamic behaviour and dynamic stall using the indicial method. In: 42nd Annual Forum of the American Helicopter Society

    Google Scholar 

  • Leishman J, Beddoes T (1989) A semi-empirical model for dynamic stall. J Am Helicopter Soc 34:3–17

    Google Scholar 

  • Lorber PF, Carta FO (1987) Airfoil dynamic stall at constant pitch rate and high reynolds number. In: AIAA 19th Fluid Dynamics, Plasma Dynamics and Lasers Conference, vol 1329

    Google Scholar 

  • Magnan A (1934) Le Vol des Insectes. Hermann, Paris

    Google Scholar 

  • Manwell J, McGowan J, Rogers A (2002) Wind energy explained-theory, design and application. Wiley, Chichester

    Book  Google Scholar 

  • McLaren KW (2011) A numerical and experimental study of unsteady loading of high solidity vertical axis wind turbines. McMaster University – Ph.D. Thesis

    Google Scholar 

  • Mert M (1999) Optimization of semi-empirical parameters in the FFA-beddoes dynamic stall model. FFA TN 1999-37

    Google Scholar 

  • Migliore PG, Wolfe WP, Fanucci JB (1980) Flow curvature effects on darrieus turbine blade aerodynamics. J Energy 4:2(3):49–55

    Google Scholar 

  • National Renewable Energy Laboratories Unsteady airfoil Ohio state university data. Available at https://wind.nrel.gov/airfoils/OSU_data/data/

  • Øye S (1990) Dynamic stall simulated as time lag of separation. In: Proceedings of the Fourth IEA Symposium on the Aerodynamics of Wind Turbines, Rome, 20–21 Nov

    Google Scholar 

  • Paraschivoiu I, Desy P, Masson C (1988) Blade tip, finite aspect ratio, and dynamic stall effects on the darrieus rotor. J Propuls Power 4(1):73–80

    Article  Google Scholar 

  • Pereira R (2010) Validating the Beddoes Leishman dynamic stall model in the horizontal axis wind turbines environment. TUDelft Master Thesis

    Google Scholar 

  • Pereira R, van Bussel GJW, Timmer WA (2012) Active stall control for large offshore horizontal axis wind turbines; a conceptual study considering different actuation methods. IOP – Science of Making Torque

    Google Scholar 

  • Pereira R, de Oliveira G, Timmer WA, Quaeghebeur E (2018) Probabilistic design of airfoils for horizontal axis wind turbines. J Phys Conf Ser 1037(2):022042

    Article  Google Scholar 

  • Pereira R, Schepers G, Pavel Marilena D (2012) Validation of the Beddoes Leishman dynamic stall model for horizontal axis wind turbines using Mexico data. Wind Energy 16(2):207–219

    Article  Google Scholar 

  • Pirrung G, Gaunaa M (2018) Dynamic stall model modifications to improve the modeling of vertical axis wind turbines. DTU Wind Energy E

    Google Scholar 

  • Ramsay RF, Hoffman MJ, Gregorek GM (1995) Effects of grit roughness and pitch oscillations on the S809 airfoil. NREL/TP-442-7817, 12

    Google Scholar 

  • Rezaeiha A, Kalman I, Blocken B (2017a) Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl Energy 197:132–150

    Article  Google Scholar 

  • Rezaeiha A, Pereira R, Kotsonis M (2017b) Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large horizontal axis wind turbine. Renew Energy 114:904–916

    Article  Google Scholar 

  • Schepers JG, Vermeer L (1998) EEN engineering model voor scheefstand op basis van windtunnelmetingen. ECN-CX–98-070

    Google Scholar 

  • Schreck S, Robinson MC, Hand MM, Simms D (2001) Blade dynamic stall vortex kinematics for a horizontal axis wind turbine in Yawed conditions. J Solar Energy Eng Trans Asme 123:272–281

    Article  Google Scholar 

  • Seto LY, Galbraith RA (1985) The effect of pitch rate on the dynamic stall of a NACA 23012 aerofoil. In: 11th European Rotorcraft Forum, London: Paper No 34, September 1985

    Google Scholar 

  • Sheng W, Galbraith RAM, Coton FN (2006) A new stall onset criterion for low speed dynamic stall. J Solar Energy Eng 128(4):461–471

    Article  Google Scholar 

  • Sheng W, Galbraith R, Coton F (2008) A modified dynamic stall model for low mach numbers. J Solar Eng 130:031013–1/031013–10

    Google Scholar 

  • Snel H (1997) Heuristic modelling of dynamic stall characteristics. In: Conference Proceedings European Wind Energy Conference, pp 429–433

    Google Scholar 

  • Snel H (2004) Application of a modified theodorsen model to the estimation of aerodynamic forces and aeroelastic stability. In: Conference Proceedings European Wind Energy Conference, pages ECN–RX–04–120

    Google Scholar 

  • Snel H, Houwink R, van Bussel GJW, Bruining A (1993) Sectional prediction of 3D effects for stalled flow on rotating blades and comparison with measurements. In: Proceedings of the European Community Wind Energy Conference, pp 395–399

    Google Scholar 

  • Theodorsen T (1935) General theory of aerodynamic instability and the mechanism of flutter. NACA, Report 496

    Google Scholar 

  • Thwaites B (1961) Incompressible aerodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Timmer WA (2008) Two-dimensional low reynolds number wind tunnel results for airfoil NACA0018. Wind Eng 32(6):525–537

    Article  Google Scholar 

  • Timmer WA (2009) An overview of NACA 6-digit airfoil series characteristics with reference to airfoils for large wind turbine blades. In: 47th AIAA Aerospaces Sciences Meeting, p 268

    Google Scholar 

  • Timmer WA, van Rooij RPJOM (2003) Summary of the Delft university wind turbine dedicated airfoils. AIAA AIAA-2003–0352

    Google Scholar 

  • Tran CT, Petot D (1981) Semi-empirical model for the dynamic stall of airfoils in view of the application to the calculation of responses of a helicopter in forward flight. Vertica 5(1):35–53

    Google Scholar 

  • Wang Q, Zhao Q, Yin J, Wang B (2017) Three-dimensional effects on dynamic stall of rotor airfoil. In: American Helicopter Society 73rd Annual Forum

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Santos Pereira .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Santos Pereira, R. (2021). Aerofoil Aerodynamics of Wind Energy Devices. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_14-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics