Skip to main content

Aeroelastic Simulations Based on High-Fidelity CFD and CSD Models

  • Living reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics

Abstract

This chapter focuses on the challenges rising when modeling the aeroelasticity of modern wind turbines utilizing high-fidelity methods. A comprehensive review of the state of the art is presented at the beginning, including engineering models. Since the aeroelastic models consist of a flow and a structural solver, a detailed description of the modeling and simulation techniques is provided, including the basic requirement for coupling a computational fluid dynamics (CFD)-based solver with a computational structural dynamics (CSD)-based solver. The challenges related to the simulation of large rotating bodies, as well as moving grids, are described.

In the numerical analysis of the aeroelasticity, the blades could be structurally modeled by mainly three different elements. These are beam, shell, and solid elements, by which the accuracy level of the results could be improved. Therefore, different fidelity levels of structural discretization of the wind turbine are discussed in terms of using these elements. To model the blade using beam elements, a cross-sectional analysis tool is needed to extract the beam structure properties out of the full three-dimensional (3D) geometry of the blade. Coupling CFD to CSD needs great attention at the coupling interface between both solvers.

Since they have different grid resolution, a mapping grid technique is needed to translate the data at the interface between the nonmatching grids. Moreover, the coupling scheme should be carefully chosen based on the required accuracy level.

The chapter ends by presenting high-fidelity results of a state-of-the-art wind turbine model. The effect of the geometrical nonlinearity of the wind turbine blades is discussed. Comparisons between the different structural elements are described based on these results. The effect of the aerodynamic model fidelity is introduced.

A part of this work has been conducted during the PhD period of the first author at the Institute of Aerodynamics and Gas Dynamics (IAG), University of Stuttgart, Stuttgart, Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alaimo A, Esposito A, Messineo A, Orlando C, Tumino D (2015) 3D cfd analysis of a vertical axis wind turbine. Energies 8:3013–3033

    Article  Google Scholar 

  • Alonso J, Jameson A (1994) Fully implicit time-marching aeroelastic solutions. AIAA-1994-0056, 32nd Aerospace Sciences Meeting and Exhibit, Reno, NV

    Google Scholar 

  • Ambrósio JA, Kecskeméthy A (2007) Multibody dynamics of biomechanical models for human motion via optimization. In: Multibody dynamics, pp. 245–272. Springer

    Google Scholar 

  • Andre MS (2018) Aeroelastic modeling and simulation for the assessment of wind effects on a parabolic trough solar collector. Dissertation. Technische Universität München. München

    Google Scholar 

  • Anjuri EV (2012) Comparison of experimental results with CFD for NREL phase vi rotor with tip plate. Int J Renew Energy Res 2:556–563

    Google Scholar 

  • Apostolatos A (2019) Isogeometric Analysis of thin-walled structures on multipatch surfaces in fluid-structure interaction. Dissertation. Technische Universität München. München

    Google Scholar 

  • Apostolatos A, Nayer GD, Bletzinger KU, Breuer M, Wüchner R (2019) Systematic evaluation of the interface description for fluid—structure interaction simulations using the isogeometric mortar-based mapping. J Fluids Struct 86:368–399. http://www.sciencedirect.com/science/article/pii/S0889974618307308, https://doi.org/10.1016/j.jfluidstructs.2019.02.012

  • Austin Cottrell J, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. https://doi.org/10.1002/9780470749081.ch7

  • Bak C, Zahle F, Bitsche R, Kim T, Yde A, Henriksen LC, Hansen MH, Blasques JPAA, Gaunaa M, Natarajan A (2013a) The dtu 10-mw reference wind turbine, in: Danish Wind Power Research (2013)

    Google Scholar 

  • Bak C, Zahle F, Bitsche R, Kim T, Yde A, Henriksen LC, Natarajan A, Hansen M (2013b) Description of the dtu 10 mw reference wind turbine. DTU Wind Energy Report-I-00925

    Google Scholar 

  • Barlas TK, Zahle F, Sørensen NN, Gaunaa M, Bergami L (2012) Simulations of a rotor with active deformable trailing edge flaps in half-wake inflow: comparison of ellipsys 3D with HAWC2. In: EWEA 2012-European wind energy conference & exhibition, European Wind Energy Association (EWEA)

    Google Scholar 

  • Bathe KJ (2006) Finite element procedures. Klaus-Jurgen Bathe

    MATH  Google Scholar 

  • Batina JT (1990) Unsteady euler airfoil solutions using unstructured dynamic meshes. AIAA J 28:1381–1388

    Article  Google Scholar 

  • Bauchau OA (1998) Computational schemes for flexible, nonlinear multi-body systems. Multibody Syst Dyn 2:169–225

    Article  MATH  Google Scholar 

  • Bauchau OA, Craig JI (2009) Structural analysis: with applications to aerospace structures, vol 163. Springer Science & Business Media

    Google Scholar 

  • Bauchau OA, Hodges DH (1999) Analysis of nonlinear multibody systems with elastic couplings. Multibody Syst Dyn 3:163–188

    Article  MATH  Google Scholar 

  • Bazilevs Y, Hsu MC, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar T (2011a) 3D simulation of wind turbine rotors at full scale. part I: Geometry modeling and aerodynamics. Int J Num Meth Fluids 65:207–235

    Article  MATH  Google Scholar 

  • Bazilevs Y, Hsu MC, Kiendl J, Wüchner R, Bletzinger KU (2011b) 3D simulation of wind turbine rotors at full scale. part II: Fluid-structure interaction modeling with composite blades. Int J Num Meth Fluids 65:236–253

    Article  MATH  Google Scholar 

  • Bazilevs Y, Hsu MC, Scott M (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Meth Appl Mech Eng 249:28–41

    Article  MathSciNet  MATH  Google Scholar 

  • Bazilevs Y, Hughes TJ (2007) Weak imposition of dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26

    Article  MathSciNet  MATH  Google Scholar 

  • Bazilevs Y, Michler C, Calo V, Hughes T (2007) Weak dirichlet boundary conditions for wall-bounded turbulent flows. Comput Meth Appl Mech Eng 196:4853–4862

    Article  MathSciNet  MATH  Google Scholar 

  • Bechmann A, Sørensen NN, Zahle F (2011) CFD simulations of the mexico rotor. Wind Energy 14:677–689

    Article  Google Scholar 

  • Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley

    MATH  Google Scholar 

  • Benek J, Steger J, Dougherty FC (1983) A flexible grid embedding technique with application to the Euler equations. In: 6th computational fluid dynamics conference danvers, p 1944

    Google Scholar 

  • Bergmann M, Iollo A, Ouest IBS, Team M (2012) Numerical simulation of horizontal- axis wind turbine (HAWT). In: The seventh international conference on computational fluid dynamics

    Google Scholar 

  • Beyer F, Arnold M, Cheng PW et al (2013) Analysis of floating offshore wind turbine hydrodynamics using coupled cfd and multibody methods. In: The twenty-third international offshore and polar engineering conference, International Society of Offshore and Polar Engineers

    Google Scholar 

  • Bir G, Jonkman J (2007) Aeroelastic instabilities of large offshore and onshore wind turbines. In: Journal of physics: conference series, p 012069. IOP Publishing

    Google Scholar 

  • Bischoff M, Ramm E, Irslinger J (2017) Models and finite elements for thin-walled structures. Am Cancer Soc pp. 1–86. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119176817.ecm2026, https://doi.org/10.1002/9781119176817.ecm2026. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119176817.ecm2026

  • Bisplinghoff RL, Ashley H, Halfman RL (2013) Aeroelasticity. Courier Corporation

    MATH  Google Scholar 

  • Blasques JPAA, Bitsche R, Fedorov V, Eder MA (2013) Applications of the beam cross section analysis software (becas). In: 26th Nordic seminar on computational mechanics, pp 46–49

    Google Scholar 

  • Bletzinger KU, Wüchner R, Daoud F, Camprubí N (2005) Computational methods for form finding and optimization of shells and membranes. Comput Meth Appl Mech Eng 194:3438–3452

    Article  MathSciNet  MATH  Google Scholar 

  • Bletzinger KU, Wüchner R, Kupzok A (2006) Algorithmic treatment of shells and free form-membranes in FSI. In: Fluid-structure interaction. Springer, pp 336–355

    MATH  Google Scholar 

  • Blundell M, Harty D (2004) The multibody systems approach to vehicle dynamics. Elsevier. de Boer A, van Zuijlen AH, Bijl H, (2007) Review of coupling methods for non-matching meshes. Comput Meth Appl Mech Eng 196:1515–1525. https://doi.org/10.1016/j.cma.2006.03.017

  • de Boer A, van Zuijlen AH, Bijl H (2008) Comparison of conservative and consistent approaches for the coupling of non-matching meshes. Comput Meth Appl Mech Eng 197:4284–4297. https://doi.org/10.1016/j.cma.2008.05.001

    Article  MATH  Google Scholar 

  • Bogaers AE, Kok S, Reddy BD, Franz T (2014) Quasi-Newton methods for implicit black-box FSI coupling. Comput Meth Appl Mech Eng 279:113–132. https://doi.org/10.1016/j.cma.2014.06.033

    Article  MathSciNet  MATH  Google Scholar 

  • Bossanyi E (2003) Gh bladed theory manual. GH & Partners Ltd

    Google Scholar 

  • Bottasso CL, Detomi D, Serra R (2005) The ball-vertex method: a new simple spring analogy method for unstructured dynamic meshes. Comput Meth Appl Mech Eng 194:4244–4264

    Article  MATH  Google Scholar 

  • Breitenberger M, Apostolatos A, Philipp B, Wüchner R, Bletzinger KU (2015) Anal-1555 ysis in computer aided design: Nonlinear isogeometric b-rep analysis of shell structures. Comput Meth Appl Mech Eng 284:401–457. http://www.sciencedirect.com/science/article/pii/S0045782514003569, https://doi.org/10.1016/j.cma.2014.09.033. isogeometric Analysis Special Issue

  • Buechter N, Ramm E (1992) Shell theory versus degeneration—a comparison in large rotation finite element analysis. Int J Numer Meth Eng 34:39–59

    Article  MATH  Google Scholar 

  • Buhmann MD (2000) Radial basis functions. Acta Numerica 9:1–38

    Article  MathSciNet  MATH  Google Scholar 

  • Bungartz HJ, Schäfer M, (2006) Fluid-structure interaction: modelling, simulation, optimisation, vol 1. Springer Science & Business Media

    Book  MATH  Google Scholar 

  • Croce A, Sartori L, RR et al (2017) Aerodynamics of large rotors wp4 deliverable 4.12 effect of blade flexibility and structural tailoring on loads. http://www.eera-avatar.eu/publications-results-and-links/index.html

  • Carrion M, Steijl R, Barakos GN, Gomez-Iradi S, Munduate X (2014) Coupled cfd/csd method for wind turbines. Proceedings of WCCM XI/ECCM V/ECFD VI

    Google Scholar 

  • Castelos PN, Balzani C (2016) The impact of geometric non-linearities on the fatigue analysis of trailing edge bond lines in wind turbine rotor blades. In: Journal of physics: conference series, p 012009, IOP Publishing

    Google Scholar 

  • Chaviaropoulos P (1999) Flap/lead-lag aeroelastic stability of wind turbine blade sections. Wind Energy 2:99–112

    Article  Google Scholar 

  • Cotela-Dalmau J, Bucher P, Ghantasala A, Andre M, Winterstein (geb. Mini) A, Rossi R, Wüchner R (2017) Implementation of mapping strategies in a distributed memory environment. In: VII International conference on coupled problems in science and engineering, ECCOMAS, Rhodes Island

    Google Scholar 

  • Dadvand P, Rossi R, Oňate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Meth Eng 17:253–297. https://doi.org/10.1007/s11831-010-9045-2

    Article  MATH  Google Scholar 

  • De Boer A, Van der Schoot M, Bijl H (2007) Mesh deformation based on radial basis function interpolation. Comput Struct 85:784–795

    Article  Google Scholar 

  • De Nayer G, Breuer M (2014) Numerical fsi investigation based on les: flow past a cylinder with a flexible splitter plate involving large deformations (fsi-pfs-2a). Int J Heat Fluid Flow 50: 300–315

    Article  Google Scholar 

  • Degroote J (2011) Development of Algorithms for the Partitioned Simulation of Strongly Coupled Fluid-Structure Interaction Problems. Ph.D. thesis

    Google Scholar 

  • Degroote J, Bathe KJ, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput Struct 87:793–801. https://doi.org/10.1016/j.compstruc.2008.11.013

    Article  Google Scholar 

  • Dillmann A, Heller G, Krämer E et al (2014) New results in numerical and experimental fluid mechanics IX. Springer

    Book  Google Scholar 

  • Dettmer WG, Perić D (2013) A new staggered scheme for fluid-structure interaction. Int J Numer Meth Eng 93:1–22. https://doi.org/10.1002/nme.4370, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4370

  • Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley

    Book  Google Scholar 

  • Donea J, Huerta A, Ponthot JP, Rodriguez-Ferran A (2004) Chapter 14, Arbitrary Lagrangian-Eulerian methods, volume 1 of encyclopedia of computational mechanics, pp 1–25. Wiley

    Google Scholar 

  • Dose B, Rahimi H, Herráez I, Stoevesandt B, Peinke J (2018) Fluid-structure coupled computations of the nrel 5 mw wind turbine by means of CFD. Renew Energy 129:591–605

    Article  Google Scholar 

  • Duque EP, Burklund MD, Johnson W (2003) Navier-stokes and comprehensive analysis performance predictions of the nrel phase vi experiment. J Solar Energy Eng 125:457–467

    Article  Google Scholar 

  • Fanzhong M, Marilena D, Michel V (2008) Aeroelastic stability analysis of large scale horizontal axis wind turbines using reduced order system identification based on flexible nonlinear multibody dynamics. In: 46th AIAA aerospace sciences meeting and exhibit, Reno

    Google Scholar 

  • Farhat C, Degand C, Koobus B, Lesoinne M (1998a) Torsional springs for two-dimensional dynamic unstructured fluid meshes. Comput Meth Appl Mech Eng 163:231–245

    Article  MATH  Google Scholar 

  • Farhat C, Lesoinne M, Tallec PL (1998b) Load and motion transfer algorithms for fluid/ structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Meth Appl Mech Eng 157:95–114. http://www.sciencedirect.com/science/article/pii/S0045782597002168, https://doi.org/10.1016/S0045-7825(97)00216-8

  • Ferziger JH, Peric M (2012) Computational methods for fluid dynamics. Springer Science & Business Media

    MATH  Google Scholar 

  • Fischer M, Firl M, Masching H, Bletzinger K (2010) Optimization of non-linear structures based on object-oriented parallel programming. In: Seventh international conference engineering computational technology, ECT2010. Civil-Comp Press, Stirlingshire, p 67

    Google Scholar 

  • Forum MP (1994) MPI: a message-passing interface standard. Technical Report, Knoxville

    Google Scholar 

  • Gasch R, Twele J (2010) Windkraftanlagen: Grundlagen, Entwurf, Planung und Betrieb. Vieweg +  Teubner

    Google Scholar 

  • Gatzhammer B (2014) Efficient and Flexible Partitioned Simulation of Fluid-Structure Interactions. Dissertation. Technische Universität München, München

    Google Scholar 

  • Gebhardt C, Preidikman S, Massa J (2010) Numerical simulations of the aerodynamic behavior of large horizontal-axis wind turbines. Int J Hydrogen Energy 35:6005–6011

    Article  Google Scholar 

  • Gerhard T, Sturm M, Carolus TH (2013) Small horizontal axis wind turbine: analytical blade design and comparison with rans-prediction and first experimental data. In: ASME Turbo Expo 2013: turbine technical conference and exposition, pp V008T44A005-V008T44A005. American Society of Mechanical Engineers

    Google Scholar 

  • Giavotto V, Borri M, Mantegazza P, Ghiringhelli G, Carmaschi V, Maffioli G, Mussi F (1983) Anisotropic beam theory and applications. Comput Struct 16:403–413. http://www.sciencedirect.com/science/article/pii/0045794983901797, https://doi.org/10.1016/0045-7949(83)90179-7

  • Gross D, Hauger W, Schröder J, Wall W, Bonet J (2018) Engineering mechanics 2 – mechanics of materials, 2 edn. Springer

    MATH  Google Scholar 

  • Hamdi H, Mrad C, Hamdi A, Nasri R (2014) Dynamic response of a horizontal axis wind turbine blade under aerodynamic, gravity and gyroscopic effects. Appl Acoustics 86:154–164

    Article  Google Scholar 

  • Hansen M (2002) Vibrations of a three-bladed wind turbine rotor due to classical flutter. In: ASME 2002 wind energy symposium, american society of mechanical engineers, pp 256–266

    Google Scholar 

  • Hansen M (2004) Aeroelastic stability analysis of wind turbines using an eigenvalue approach. Wind Energy 7:133–143

    Article  Google Scholar 

  • Hansen MH (2007) Aeroelastic instability problems for wind turbines. Wind Energy 10:551–577

    Article  Google Scholar 

  • Hansen MH, Thomsen K, Fuglsang P, Knudsen T (2006a) Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments. Wind Energy 9:179191

    Article  Google Scholar 

  • Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen HA (2006b) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerospace Sci 42:285–330

    Article  Google Scholar 

  • Haselbach P, Bitsche R, Branner K (2016) The effect of delaminations on local buckling in wind turbine blades. Renew Energy 85. https://doi.org/10.1016/j.renene.2015.06.053

  • Heinz JC, Sørensen NN, Zahle F (2016) Fluid-structure interaction computations for geometrically resolved rotor simulations using CFD. Wind Energy 19:2205–2221

    Article  Google Scholar 

  • Helenbrook BT (2003) Mesh deformation using the biharmonic operator. Int J Numer Meth Eng 56:1007–1021

    Article  MATH  Google Scholar 

  • Henriksen LC, Hansen MH, Poulsen NK (2013) A simplified dynamic inflow model and its effect on the performance of free mean wind speed estimation. Wind Energy 16:1213–1224

    Google Scholar 

  • Hess JL (1975) Review of integral-equation techniques for solving potential-flow problems with emphasis on the surface-source method. Comput Meth Appl Mech Eng 5:145–196

    Article  MATH  Google Scholar 

  • Hodges DH, Pierce GA (2011) Introduction to structural dynamics and aeroelasticity, vol 15. Cambridge University Press

    Book  Google Scholar 

  • Hojjat M, Stavropoulou E, Gallinger T, Israel U, Wüchner R, Bletzinger KU (2011) Fluid-structure interaction in the context of shape optimization and computational wind engineering. In: Fluid sTRUCTURE iNTERAction II, pp 351–381. Springer

    Google Scholar 

  • Horcas S, Debrabandere F, Tartinville B, Hirsch C, Coussement G (2014) Mesh deformation tool for offshore wind turbines fluid-structure interaction. In: 11th world congress on computational mechanics (WCCM XI), Barcelona, pp 20–25

    Google Scholar 

  • Hsu MC, Bazilevs Y (2012) Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833. https://doi.org/10.1007/s00466-012-0772-0

    Article  MATH  Google Scholar 

  • Hughes TJR (1989) The finite element method: linear static and dynamic finite element analysis: Thomas J. R. Hughes. volume 4. https://doi.org/10.1111/j.1467-8667.1989.tb00025.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8667.1989.tb00025.x

  • Jameson A (1991) Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. AIAA paper 1596, (1991)

    Google Scholar 

  • Jeong M, Yoo S, Lee I (2011) Aeroelastic analysis for large wind turbine rotor blades. AIAA, pp 9–14

    Google Scholar 

  • Jeong MS, Kim SW, Lee I, Yoo SJ, Park K (2014) Investigation of wake effects on aeroelastic responses of horizontal-axis wind-turbines. AIAA J 52:1133–1144

    Article  Google Scholar 

  • Johansen J, Sorensen N, Michelsen J, Schreck S (2002) Detached-Eddy simulation of flow around the NREL phase-vi blade. In: ASME 2002 Wind Energy Symposium, American Society of Mechanical Engineers, pp 106–114

    Google Scholar 

  • Jonkman JM, Buhl Jr ML (2005) Fast user’s guide. National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/EL-500-38230

    Google Scholar 

  • Jost E, Fischer A, Bangga G, Lutz T, Krämer E (2017) An investigation of unsteady 3-d effects on trailing edge flaps. Wind Energy Sci 2:241–256. https://www.wind-energ-sci.net/2/241/2017/, https://doi.org/10.5194/wes-2-241-2017

  • Keerthana M, Sriramkrishnan M, Velayutham T, Abraham A, Rajan SS, Parammasivam K (2012) Aerodynamic analysis of a small horizontal axis wind turbine using CFD. J Wind Eng 9:14–28

    Google Scholar 

  • Kim Y, Lutz T, Jost E et al (2016) AVATAR Deliverable D2. 5: effects of inflow turbulence on large wind turbines. Technical Report. Technical report. Available at: http://www.eera-avatar.eu/fileadmin/avatar

  • Klein L, Gude J, Wenz F, Lutz T, Krämer E (2018) Advanced cfd-mbs coupling to assess low-frequency emissions from wind turbines. Wind Energy Sci Discuss 1–30. https://doi.org/10.5194/wes-2018-51

  • Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Computer modeling of wind turbines: 1. ale-vms and st-vms aerodynamic and FSI analysis. Arch Comput Meth Eng 1–41

    Google Scholar 

  • Kranzinger PP, Kowarsch U, Schuff M, Keßler M, Krämer E (2015) Advances in paralleliza-tion and high-fidelity simulation of helicopter phenomena, pp 479–494. Springer

    Google Scholar 

  • Kroll N, Fassbender JK (2006) MEGAFLOW-numerical flow simulation for aircraft design: results of the second phase of the German CFD initiative MEGAFLOW, presented during its closing symposium at DLR, Braunschweig, Germany, December 10 and 11, (2002) volume 89. Springer Science & Business Media

    MATH  Google Scholar 

  • Kroll N, Rossow C, Becker K, Thiele F (1998) Megaflow-a numerical flow simulation system. In: 21st ICAS congress, pp 13–09

    Google Scholar 

  • Kroll N, Rossow CC, Becker K, Thiele F (2000) The megaflow project. Aerospace Sci Technol 4:223–237

    Article  MATH  Google Scholar 

  • Küttler U (2009) Effiziente Lösungsverfahren für Fluid-Struktur-Interaktions-Probleme. Dissertation. Technische Universität München, München

    Google Scholar 

  • Küttler U, Wall WA (2008) Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput Mech 43:61–72. https://doi.org/10.1007/s00466-008-0255-5

    Article  MATH  Google Scholar 

  • Länger-Möller A, Löwe J, Kessler R (2017) Investigation of the NREL phase vi experiment with the incompressible CFD solver theta. Wind Energy 20:1529–1549

    Article  Google Scholar 

  • Larsen TJ, Hansen AM (2007) How 2 HAWC2, the user’s manual. Technical Report. Risø National Laboratory

    Google Scholar 

  • Larsen TJ, Hansen AM, Buhl T (2004) Aeroelastic effects of large blade deflections for wind turbines. In: Special topic conference: the science of making torque from wind, pp 238–246

    Google Scholar 

  • Larsen TJ, Madsen HA, Hansen AM, Thomsen K (2005) Investigations of stability effects of an offshore wind turbine using the new aeroelastic code HAWC2. Proceedings of Copenhagen Offshore Wind 2005, Copenhagen, Denmark, pp 25–28

    Google Scholar 

  • Lee D, Hodges DH, Patil MJ (2002) Multi-flexible-body dynamic analysis of horizontal axis wind turbines. Wind Energy 5:281–300

    Article  Google Scholar 

  • Lee JW, Lee JS, Han JH, Shin HK (2012) Aeroelastic analysis of wind turbine blades based on modified strip theory. J Wind Eng Ind Aerodyn 110:62–69

    Article  Google Scholar 

  • Lee K, Huque Z, Kommalapati R, Han SE (2015) The evaluation of aerodynamic interaction of wind blade using fluid structure interaction method. J Clean Energy Technol 3:270–275

    Article  Google Scholar 

  • Lefrançois E (2008) A simple mesh deformation technique for fluid-structure interaction based on a submesh approach. Int J Numer Meth Eng 75:1085–1101

    Article  MathSciNet  MATH  Google Scholar 

  • Leishman JG (2002) Challenges in modeling the unsteady aerodynamics of wind turbines. In: ASME 2002 wind energy symposium. American Society of Mechanical Engineers, pp 141–167

    Google Scholar 

  • Li Y, Castro A, Martin J, Sinokrot T, Prescott W, Carrica P (2017) Coupled computational fluid dynamics/multibody dynamics method for wind turbine aero-servo-elastic simulation including drivetrain dynamics. Renew Energy 101:1037–1051

    Article  Google Scholar 

  • Li Y, Castro A, Sinokrot T, Prescott W, Carrica P (2015) Coupled multi-body dynamics and cfd for wind turbine simulation including explicit wind turbulence. Renew Energy 76:338–361

    Article  Google Scholar 

  • Li Y, Paik KJ, Xing T, Carrica PM (2012) Dynamic overset CFD simulations of wind turbine aerodynamics. Renew Energy 37:285–298

    Article  Google Scholar 

  • Liangyou H, Dongxiang J, Chao L, Qian H (2009) The study of aeroelastic stability for wind turbine blades. In: 2009 international conference on sustainable power generation and supply, pp 1–7. IEEE

    Google Scholar 

  • Liu S, Janajreh I (2012) Development and application of an improved blade element momentum method model on horizontal axis wind turbines. Int J Energy Environ Eng 3:1–10

    Article  Google Scholar 

  • Lobitz DW (2004) Aeroelastic stability predictions for a mw-sized blade. Wind Energy 7:211–224

    Article  Google Scholar 

  • Löhner R, Yang C (1996) Improved ale mesh velocities for moving bodies. Commun Numer Meth Eng 12:599–608

    Article  MATH  Google Scholar 

  • Luke E, Collins E, Blades E (2012) A fast mesh deformation method using explicit interpolation. J Comput Phys 231:586–601

    Article  MathSciNet  MATH  Google Scholar 

  • Lundsager P, Petersen H, Frandsen S (1981) The dynamic behaviour of the stall-regulated Nibe A wind turbine. Measurements and a model for stall-induced vibrations. Technical Report

    Google Scholar 

  • Lynch DR, O’Neill K (1980) Elastic grid deformation for moving boundary problems in two space dimensions. Finite elements in water resources 2

    Google Scholar 

  • Madsen HA, Riziotis V, Zahle F, Hansen M, Snel H, Grasso F, Larsen T, Politis E, Rasmussen F (2012) Blade element momentum modeling of inflow with shear in comparison with advanced model results. Wind Energy 15:63–81. https://doi.org/10.1002/we.493

    Article  Google Scholar 

  • Malcolm DJ, Laird DL (2003) Modeling of blades as equivalent beams for aeroelastic analysis. In: ASME 2003 wind energy symposium. American Society of Mechanical Engineers, pp 293–303

    Google Scholar 

  • Mann J (1994) The spatial structure of neutral atmospheric surface-layer turbulence. J Fluid Mech 273:141–168

    Article  MATH  Google Scholar 

  • Manolas D, Riziotis V, Voutsinas S (2015) Assessing the importance of geometric nonlinear effects in the prediction of wind turbine blade loads. J Comput Nonlinear Dyn 10:041008

    Article  Google Scholar 

  • Markou GA, Mouroutis ZS, Charmpis DC, Papadrakakis M (2007) The ortho-semi-torsional (ost) spring analogy method for 3D mesh moving boundary problems. Comput Meth Appl Mech Eng 196:747–765

    Article  MATH  Google Scholar 

  • Masarati P, Sitaraman J (2011) Coupled cfd/multibody analysis of NREL unsteady aerodynamic experiment phase vi rotor. In: AIAA aerospace sciences meeting and exhibit, Orlando, AIAA Paper

    Book  Google Scholar 

  • McConville JB, McGrath JF (1998) Introduction to adams theory. Mechanical Dynamic Inc.(MDI)

    Google Scholar 

  • McDaniel D, Morton S (2009) Efficient mesh deformation for computational stability and control analyses on unstructured viscous meshes. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p 1363

    Google Scholar 

  • Meister K (2015a) Numerische Untersuchung zum aerodynamischen und aeroelastischen Verhalten einer Windenergieanlage bei turbulenter atmosphärischer Zuströmung. Shaker Verlag

    Google Scholar 

  • Meister K (2015b) Numerische Untersuchung zum aerodynamischen und aeroelastischen Verhalten einer Windenergieanlage bei turbulenter atmosphärischer Zuströmung. Dissertation. Universität Stuttgart. Stuttgart

    Google Scholar 

  • Meister K, Lutz T, Krämer E (2014) Simulation of a 5mw wind turbine in an atmospheric boundary layer. In: Journal of physics: conference series, p 012071. IOP Publishing

    Google Scholar 

  • Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    Article  MathSciNet  MATH  Google Scholar 

  • Mok DP (2001) Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-Interaktion. Ph.D. thesis. Universität Stuttgart, Stuttgart

    Google Scholar 

  • Oňate E (2013) Structural analysis with the finite element method. Linear statics: volume 2: beams, plates and shells. Springer Science & Business Media

    Google Scholar 

  • OpenFOAM (2019) Openfoam. https://www.openfoam.com

  • Øye S (1996) Flex4 simulation of wind turbine dynamics. In: Proceedings of the 28th IEA meeting of experts concerning state of the art of aeroelastic codes for wind turbine calculations (Available through International Energy Agency)

    Google Scholar 

  • Weihing P et al (2018) Hybrid rans/les capabilities of the flow solver flower – application to flow around wind turbines. Notes on Numerical Fluid Mechanics an Multidisciplinary Design

    Book  Google Scholar 

  • Patil MJ, Lee D, Hodges DH (2001) Multi-flexible-body dynamic analysis of horizontal-axis wind turbines. In: Proceedings ASME/AIAA wind energy symposium, pp 369–399

    Google Scholar 

  • Pavel M, van Holten T (2000) A rotor-tower instability associated with the advancing lead-lag mode. In: 2000 ASME wind energy symposium, 19 th, AIAA, Aerospace Sciences Meeting and Exhibit, 38 th, Reno, pp 197–207

    Google Scholar 

  • Pavel M, Schoones M (1999) Literature survey on aeromechanical instabilities for helicopters and wind turbines. Delft University of Technology, Faculty of Aerospace Engineering

    Google Scholar 

  • Peeters M, Santo G, Degroote J, Van Paepegem W (2018) Comparison of shell and solid finite element models for the static certification tests of a 43 m wind turbine blade. ENERGIES 11. https://doi.org/10.3390/en11061346

  • Pfeiffer F, Glocker C (1996) Multibody dynamics with unilateral contacts, vol 9. Wiley

    Book  MATH  Google Scholar 

  • Piculin S, Brank B (2015) Weak coupling of shell and beam computational models for failure analysis of steel frames. Finite Elements Anal Design 97:20–42

    Article  Google Scholar 

  • Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems-part II: energy transfer analysis and three-dimensional applications. Comput Meth Appl Mech Eng 190:3147–3170

    Article  MATH  Google Scholar 

  • Pitt DM, Peters DA (1980) Theoretical prediction of dynamic-inflow derivatives

    Google Scholar 

  • Raddatz J (2009) The block-structured RANS solver FLOWer

    Google Scholar 

  • Réthoré PE, Sørensen NN, Zahle F, Bechmann A, Madsen HA (2011) Mexico wind tunnel and wind turbine modelled in CFD

    Google Scholar 

  • Rezaeiha A, Kalkman I, Blocken B (2017) CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: guidelines for minimum domain size and azimuthal increment. Renew Energy 107:373–385

    Article  Google Scholar 

  • Richter T, Wick T (2015) On time discretizations of fluid-structure interactions. In: Multiple shooting and time domain decomposition methods, pp 377–400. Springer

    Google Scholar 

  • Riziotis V, Voutsinas S, Politis E, Chaviaropoulos P (2004) Aeroelastic stability of wind turbines: the problem, the methods and the issues. Wind Energy 7:373–392

    Article  Google Scholar 

  • Riziotis V, Voutsinas S, Politis E, Chaviaropoulos P, Hansen A, Madsen Aagaard H, Rasmussen F (2008) Identification of structural non-linearities due to large deflections on a 5MW wind turbine blade. Eur Wind Energy Conf Exhib 9–14

    Google Scholar 

  • Roache PJ (1993) A method for uniform reporting of grid refinement studies. ASME-PUBLICATIONS-FED 158, 109–109

    Google Scholar 

  • Robertson A, Jonkman J, Musial W, Vorpahl F, Popko W (2013) Offshore code comparison collaboration, continuation: Phase II results of a floating semisubmersible wind system. Technical Report. National Renewable Energy Lab.(NREL), Golden

    Google Scholar 

  • Robertson AN, Wendt F, Jonkman JM, Popko W, Borg M, Bredmose H, Schlutter F, Qvist J, Bergua R, Harries R et al (2016) Oc5 project phase ib: validation of hydrodynamic loading on a fixed, flexible cylinder for offshore wind applications. Energy Procedia 94:82–101

    Article  Google Scholar 

  • Samareh JA (2002) Application of quaternions for mesh deformation

    Google Scholar 

  • Sargin H, Kayran A (2014) Comparison of transient and quasi-steady aeroelastic analysis of wind turbine blade in steady wind conditions 524, 012051

    Google Scholar 

  • Sayed M (2018) Analysis of Engineering Models by CFD-based Aeroelastic Simulations of Wind Turbine Blades. Dissertation. Universität Stuttgart. Stuttgart

    Google Scholar 

  • Sayed M, Klein L, Lutz T, Krämer E (2019) The impact of the aerodynamic model fidelity on the aeroelastic response of multi-megawatt wind turbine. Renewable Energy 140:304–318

    Article  Google Scholar 

  • Sayed M, Lutz T, Krämer E (2015) Aerodynamic investigation of flow over a multi-megawatt slender bladed horizontal-axis wind turbine, pp 773–780. CRC Press

    Google Scholar 

  • Sayed M, Lutz T, Krämer E, Shayegan S, Ghantasala, A., Wüchner R, Bletzinger KU (2016) High fidelity CFD-CSD aeroelastic analysis of slender bladed horizontal-axis wind turbine. In: Journal of physics: conference series, p 042009. IOP Publishing

    Google Scholar 

  • Schmitz S, Chattot JJ (2006) Characterization of three-dimensional effects for the rotating and parked nrel phase vi wind turbine. J Solar Energy Eng 128:445–454

    Article  Google Scholar 

  • Schulz C, Hofsäß M, Anger J, Rautenberg A, Lutz T, Cheng PW, Bange J (2016) Comparison of different measurement techniques and a CFD simulation in complex terrain. J Phys Conf Ser 753:082017. https://doi.org/10.1088/1742-6596/753/8/082017

    Article  Google Scholar 

  • Schulz C, Klein L, Weihing P, Lutz T, Krämer E (2014) CFD studies on wind turbines in complex terrain under atmospheric inflow conditions. In: Journal of physics: conference series, p 012134. IOP Publishing

    Google Scholar 

  • Schulz C, Letzgus P, Weihing P, Lutz T, Krämer E (2018) Numerical simulation of the impact of atmospheric turbulence on a wind turbine in complex terrain. J Phys Conf Ser 1037:072016. https://doi.org/10.1088/1742-6596/1037/7/072016

    Article  Google Scholar 

  • Schwarz T, Spiering F, Kroll N (2010) Grid coupling by means of chimera interpolation techniques

    Google Scholar 

  • Selim M, Koomullil R et al (2016) Mesh deformation approaches-a survey. J Phys Math 7

    Google Scholar 

  • Sezer-Uzol N, Gupta A, Long LN (2009) 3-D time-accurate inviscid and viscous CFD simulations of wind turbine rotor flow fields. In: Parallel computational fluid dynamics (2007), pp 457–464. Springer

    Google Scholar 

  • Sezer-Uzol N, Long LN (2006) 3-D time-accurate cfd simulations of wind turbine rotor flow fields. AIAA Paper 394

    Google Scholar 

  • SHARCNet (2019) Ansys. https://www.sharcnet.ca/my/software/show/22

  • Shirzadeh R, Devriendt C, Bidakhvidi M, Guillaume P et al (2012) Experimental and computational aeroelastic damping of an offshore wind turbine on a monopile foundation

    Google Scholar 

  • Sicklinger S (2014) Stabilized Co-Simulation of Coupled Problems including Fields and Signals. Dissertation. Technische Universität München, München

    Google Scholar 

  • Sicklinger S, Belsky V, Engelmann B, Elmqvist H, Olsson H, Wüchner R, Bletzinger KU (2014) Interface jacobian-based co-simulation. Int J Numer Meth Eng 98:418–444

    Article  MathSciNet  MATH  Google Scholar 

  • Sicklinger S, Lerch C, Wüchner R, Bletzinger KU, (2015) Fully coupled co-simulation of a wind turbine emergency brake maneuver. J Wind Eng Ind Aerodyn 144:134–145

    Article  Google Scholar 

  • Simms D, Schreck S, Hand M, Fingersh LJ (2001) NREL unsteady aerodynamics experiment in the nasa-ames wind tunnel: a comparison of predictions to measurements. https://doi.org/10.2172/783409

  • Somers DM (1997) Design and experimental results for the s809 airfoil. https://doi.org/10.2172/437668

  • Sørensen NN, Michelsen J, Schreck S (2002) Navier-stokes predictions of the nrel phase vi rotor in the nasa ames 80 ft χ 120 ft wind tunnel. Wind Energy 5:151–169

    Article  Google Scholar 

  • Sreenath S, Saravanan U, Kalyanaraman V (2011) Beam and shell element model for advanced analysis of steel structural members. J Constr Steel Res 67:1789–1796

    Article  Google Scholar 

  • Stettner M, Reijerkerk MJ, Lünenschloß A, Riziotis V, Croce A, Sartori L, Riva R, Peeringa JM (2016) Stall-induced vibrations of the AVATAR rotor blade. J Phys Conf Ser 753:042019. https://doi.org/10.1088/1742-6596/753/4/042019

    Article  Google Scholar 

  • Streiner S (2011) Beitrag zur numerischen Simulation der Aerodynamik und Aeroelastik großer Windkraftanlagen mit horizontaler Achse. Verlag Dr. Hut

    Google Scholar 

  • Thirstrup Petersen J, Aagaard Madsen H, Björck A, Enevoldsen P, Øye S, Ganander H, Winkelaar D (1998) Prediction of dynamic loads and induced vibrations in stall. Technical Report

    Google Scholar 

  • Tojo BM, Marta AC (2012) Aero-Structural blade design of a high-power wind turbine. Ph.D. thesis. M. Sc. dissertation. Portugal: Universidade Tecnica de Lisboa

    Google Scholar 

  • Tongchitpakdee C, Benjanirat S, Sankar LN (2005) Numerical simulation of the aerodynamics of horizontal axis wind turbines under yawed flow conditions. J Sol Energy Eng 127:464–474

    Article  Google Scholar 

  • Uekermann B (2016) Partitioned fluid-structure interaction on massively parallel systems. Dissertation. Technische Universität München. München

    Google Scholar 

  • Uyttersprot L (2014) Inverse distance weighting mesh deformation. Ph.D. thesis. Ph.D. thesis, Delft University of Technology

    Google Scholar 

  • Van Holten T, Pavel M, Smits G (1999) Aeroelastic stability of modern windturbines: STABTOOL Final report phase 1. Technical Report. Delft University of Technology

    Google Scholar 

  • Verelst D (2009) Flexible wind turbine blades: a bem-fem coupled model approach. Delft University of Technology (TU Delft)

    Google Scholar 

  • Vorpahl F, Strobel M, Jonkman JM, Larsen TJ, Passon P, Nichols J (2014) Verification of aero-elastic offshore wind turbine design codes under iea wind task xxiii. Wind Energy 17:519–547

    Article  Google Scholar 

  • Vorpahl FR (2015) Modeling of offshore wind turbines with braced support structures. Ph.D. thesis. Hannover: Gottfried Wilhelm Leibniz Universität Hannover

    Google Scholar 

  • Wang L, Liu X, Renevier N, Stables M, Hall GM (2014) Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory. Energy 76:487–501

    Article  Google Scholar 

  • Wang T (2016) Development of co-simulation environment and mapping algorithms. Dissertation. Technische Universität München. München

    Google Scholar 

  • Whale J, Fisichella C, Selig M (1999) Correcting inflow measurements from j3awts using a lifting-surface code. Urbana 51:61801

    Google Scholar 

  • WMC (2019) Focus6. https://wmc.eu/focus6.php

  • Wüchner R, Péntek M (2018) Lecture notes in “structural wind engineering”

    Google Scholar 

  • Xiong L, Xianmin Z, Gangqiang L, Yan C, Zhiquan Y (2010) Dynamic response analysis of the rotating blade of horizontal axis wind turbine. Wind Eng 34:543–559

    Article  Google Scholar 

  • Yang Z, Mavriplis D (2005) Unstructured dynamic meshes with higher-order time integration schemes for the unsteady Navier-Stokes equations. In: 43rd AIAA aerospace sciences meeting and exhibit, p 1222

    Google Scholar 

  • Yu D, Kwon O (2014a) Time-accurate aeroelastic simulations of a wind turbine in yaw and shear using a coupled cfd-csd method. In: Journal of physics: conference series, p 012046. IOP Publishing

    Google Scholar 

  • Yu DO, Kwon OJ (2014b) Predicting wind turbine blade loads and aeroelastic response using a coupled cfd-csd method. Renew Energy 70:184–196

    Article  Google Scholar 

  • Yu DO, Kwon OJ (2014) Time-accurate aeroelastic simulations of a wind turbine in yaw and shear using a coupled CFD-CSD method. J Phys Conf Ser 524:012046

    Article  Google Scholar 

  • Zahle F, Sørensen NN, (2007) On the influence of far-wake resolution on wind turbine flow simulations. In: Journal of physics: conference series, p 012042. IOP Publishing

    Google Scholar 

  • Zeng D, Ethier CR (2005) A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains. Finite Elem Anal Des 41:1118–1139

    Article  Google Scholar 

  • Zhang P, Huang S (2011) Review of aeroelasticity for wind turbine: Current status, research focus and future perspectives. Front Energy 5:419–434

    Article  Google Scholar 

  • Zhang Z, Nielsen SR (2014) The influence of turbulence on the aero-elastic instability of wind turbines. In: Eurodyn 2014-Ix international conference on structural dynamics, European Association for Structural Dynamics (EASD)

    Google Scholar 

  • Zienkiewicz O, Taylor R, Fox D (2013a) The finite element method for solid and structural mechanics, 7th edn

    Google Scholar 

  • Zienkiewicz O, Taylor R, Zhu J (2013b) The finite element method: its basis and fundamentals, 7th edn

    Google Scholar 

  • Zorrilla R, Rossi R, Wüchner R, Oňate E (2020) An embedded finite element framework for the resolution of strongly coupled fluid-structure interaction problems. application to volumetric and membrane-like structures. Comput Methods Appl Mech Eng 368:113179. http://www.sciencedirect.com/science/article/pii/S0045782520303649, https://doi.org/10.1016/j.cma.2020.113179

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lutz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sayed, M., Bucher, P., Guma, G., Lutz, T., Wüchner, R. (2021). Aeroelastic Simulations Based on High-Fidelity CFD and CSD Models. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_22-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics