Advertisement

Aeroelastic Stability Models

  • Jessica G. HolierhoekEmail author
Living reference work entry
  • 59 Downloads

Abstract

In this chapter aeroelastic stability for wind turbines is discussed. The complete wind turbine mode shapes, the harmonic modal components, and the main instabilities are explained, possible resonances addressed, and methods to analyze and improve the stability of a wind turbine design are discussed. The main instabilities that current size wind turbines could suffer from are stall-induced vibrations (edgewise and flapwise, idling instabilities, and vortex-induced vibrations) and classical flutter. The stability of a design can be evaluated using linearized stability tools or nonlinear time domain tools. It is also possible to evaluate damping of some modes on an actual wind turbine. Current size wind turbine has become more flexible, and due to the large deformations, it is required to use advanced blade models when analyzing the stability of the turbine.

Keywords

Wind turbine aeroelasticity Instability Resonance Aeroelastic evaluations 

References

  1. Anderson C, Heerkes H, Yemm R (1999) The use of blade-mounted dampers to eliminate edgewise stall vibration. In EWEA 1999, NiceGoogle Scholar
  2. Bielawa RL (1992) Rotary wing structural dynamics and aeroelasticity. AIAA Education Series, Washington, DCGoogle Scholar
  3. Bir G (2008) Multiblade coordinate transformation and its application to wind turbine analysis. In: Proceedings of the 2008 ASME Wind Energy SymposiumGoogle Scholar
  4. Bisplinghoff RL, Ashley H, Halfman RL (1996) Aeroelasticity. Dover Publications, Inc., New YorkzbMATHGoogle Scholar
  5. Bottasso CL, Campagnolo F, Croce A, Tibaldi C (2013) Optimization-based study of bend-twist coupled rotor blades for passive and integrated passive/active load alleviation. Wind Energy 16:1149–1166CrossRefGoogle Scholar
  6. Bramwell ARS, Done G, Balmford D (2001) Bramwell’s helicopter dynamics, 2nd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  7. Chizfahm A, Yazdi EA, Eghtesad M (2018) Dynamic modeling of vortex induced vibration wind turbines. Renew Energy 121(C):632–643CrossRefGoogle Scholar
  8. Collar AR (1946) The expanding domain of aeroelasticity. J R Aeronaut Soc L:613–636Google Scholar
  9. Connell JR (1981) The spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system: qObservations and theory. Technical Report PNL-4083 UC-60, Pacific Northwest Laboratory, BattelleGoogle Scholar
  10. Fung YC (1969) An introduction to the theory of aeroelasticity. Dover Publications, Inc., New YorkGoogle Scholar
  11. Gao Q, Cai X, Guo X-W, Meng R (2018) Parameter sensitivities analysis for classical flutter speed of a horizontal axis wind turbine blade. J Cent South Univ 25(7):1746–1754CrossRefGoogle Scholar
  12. Hansen MH (2003) Improved modal dynamics of wind turbines to avoid stall-induced vibrations. Wind Energy 6:179–195CrossRefGoogle Scholar
  13. Hansen MH (2007) Aeroelastic instability problems for wind turbines. Wind Energy 10:551–577CrossRefGoogle Scholar
  14. Hansen MH (2016) Modal dynamics of structures with bladed isotropic rotors and its complexity for two-bladed rotors. Wind Energ Sci 1:271–296CrossRefGoogle Scholar
  15. Hansen MH, Thomsen K, Fuglsang P, Knudsen T (2006a) Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments. Wind Energy 9:179–191CrossRefGoogle Scholar
  16. Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen HA (2006b) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42(4):285–330CrossRefGoogle Scholar
  17. Hansen M (2011) Aeroelastic properties of backward swept blades. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace ExpositionGoogle Scholar
  18. Hau E (2006) Wind turbines: fundamentals, technologies, application, economics, 2nd edn. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  19. Heinz J, Sørensen NN, Riziotis V, Chassapoyannis P, Schwarz CM, Iradi SG, Stettner M (2016a) Stand-still operation. Technical Report Deliverable 4.5 AVATARGoogle Scholar
  20. Heinz JC, Sørensen NN, Zahle F (2016b) Fluid-structure interaction computations for geometrically resolved rotor simulations using CFD. Wind Energy 19(12):2205–2221CrossRefGoogle Scholar
  21. Heinz JC, Sørensen NN, Zahle F, Skrzypiński W (2016c) Vortex-induced vibrations on a modern wind turbine blade. Wind Energy 19(11):2041–2051CrossRefGoogle Scholar
  22. Holierhoek JG (2008) Aeroelasticity of large wind turbines. Ph.D. thesis, Delft University of TechnologyGoogle Scholar
  23. Johnson W (1980) Helicopter theory. Princeton University Press, PrincetonGoogle Scholar
  24. Jonkman JM, Matha D (2011) Dynamics of offshore floating wind turbines-analysis of three concepts. Wind Energy 14(4):557–569CrossRefGoogle Scholar
  25. Kallesøe BS (2011) Effect of steady deflections on the aeroelastic stability of a turbine blade. Wind Energy 14:209–224CrossRefGoogle Scholar
  26. Kallesøe BS, Kragh KA (2016) Field validation of the stability limit of a multi mw turbine. J Phys Conf Ser 753:1–7CrossRefGoogle Scholar
  27. Kanev S, van Engelen T (2010) Wind turbine extreme gust control. Wind Energy 13(1):18–35CrossRefGoogle Scholar
  28. Kristensen L, Frandsen S (1982) Model for power spectra of the blade of a wind turbine measured from the moving frame of reference. J Wind Eng Ind Aerodyn 10:249–262CrossRefGoogle Scholar
  29. Lindenburg C (2003) Bladmode; program for rotor blade mode analysis. Technical Report ECN-C–02-050, ECN, PettenGoogle Scholar
  30. Lobitz DW (2004) Aeroelastic stability predictions for a MW-sized blade. Wind Energy 7:211–224CrossRefGoogle Scholar
  31. Lobitz D (2005) Parameter sensitivities affecting the flutter speed of a MW-sized blade. In 43rd AIAA Aerospace Sciences Meeting and ExhibitGoogle Scholar
  32. Lobitz DW, Veers PS (2003) Load mitigation with bending/twist-coupled blades on rotors using modern control strategies. Wind Energy 6:105–117CrossRefGoogle Scholar
  33. Møller T (1997) Blade cracks signal new stress problem. WindPower MonthlyGoogle Scholar
  34. Ozbek M, Rixen DJ (2013) Operational modal analysis of a 2.5 MW wind turbine using optical measurement techniques and strain gauges. Wind Energy 16(3):367–381CrossRefGoogle Scholar
  35. Peters DA (1994) Fast floquet theory and trim for multibladed rotorcraft. J Am Helicopter Soc 39(4):82–89CrossRefGoogle Scholar
  36. Petersen JT, Madsen HA, Björck A, Enevoldsen P, Øye S, Ganander H, Winkelaar D (1998a) Prediction of dynamic loads and induced vibrations in stall. Technical Report Technical Report Risø-R-1045(EN), Risø National Laboratory, RoskildeGoogle Scholar
  37. Petersen JT, Thomson K, Madsen HA (1998b) Local blade whirl and global rotor whirl interaction. Technical Report Technical Report Risø-R-1067(EN), Risø National Laboratory, RoskildeGoogle Scholar
  38. Pirrung GR, Madsen H, Kim T (2014) The influence of trailed vorticity on flutter speed estimations. J Phys Conf Ser 524:012048CrossRefGoogle Scholar
  39. Politis E, Chaviaropoulos P, Riziotis V, Voutsinas S, Romero-Sanz I (2009) Stability analysis of parked wind turbine blades. In: Proceedings of the EWEC, pp 16–19Google Scholar
  40. Riva R, Cacciola S, Bottasso CL (2016) Periodic stability analysis of wind turbines operating in turbulent wind conditions. Wind Energy Sci 1(2):177–203CrossRefGoogle Scholar
  41. Skjoldan P (2009) Modal dynamics of wind turbines with anisotropic rotors. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace ExpositionGoogle Scholar
  42. Skjoldan PF (2011) Aeroelastic modal dynamics of wind turbines including anisotropic effects. Ph.D. thesis, Risø DTUGoogle Scholar
  43. Skjoldan P, Hansen M (2009) On the similarity of the Coleman and Lyapunov-Floquet transformations for modal analysis of bladed rotor structures. J Sound Vib 327(3):424–439CrossRefGoogle Scholar
  44. Skrzypiński W, Gaunaa M (2015) Wind turbine blade vibration at standstill conditions – the effect of imposing lag on the aerodynamic response of an elastically mounted airfoil. Wind Energy 18(3):515–527CrossRefGoogle Scholar
  45. Skrzypiński W, Gaunaa M, Sørensen N, Zahle F, Heinz J (2014) Vortex-induced vibrations of a du96-w-180 airfoil at 90 degree angle of attack. Wind Energy 17(10):1495–1514CrossRefGoogle Scholar
  46. Spera DA (1994) Wind turbine technology: fundamental concepts of wind turbine engineering. ASME, New YorkGoogle Scholar
  47. Stäblein AR, Hansen MH, Verelst DR (2017) Modal properties and stability of bend–twist coupled wind turbine blades. Wind Energy Sci 2(1):343–360CrossRefGoogle Scholar
  48. Stettner M, Reijerkerk MJ, Lünenschloß A, Riziotis V, Croce A, Sartori L, Riva R, Peeringa JM (2016) Stall-induced vibrations of the AVATAR rotor blade. J Phys Conf Ser 753:042019CrossRefGoogle Scholar
  49. Stiesdal H (1994) Extreme wind loads on stall regulated wind turbines. In: BWEA 16, Stirling, UK. Mechanical Engineering Publications LtdGoogle Scholar
  50. Stol K, Balas M, Bir G (2002) Floquet modal analysis of a teetered-rotor wind turbine. J Sol Energy Eng 124(4):364–371CrossRefGoogle Scholar
  51. Thomsen K, Petersen JT, Nim E, Øye S, Petersen B (2000) A method for determination of damping for edgewise blade vibrations. Wind Energy 3(4):233–246CrossRefGoogle Scholar
  52. Wang Q, Jonkman J, Sprague M, Jonkman B (2016) Beamdyn user’s guide and theory manual. Technical report, NRELGoogle Scholar
  53. Wang K, Riziotis VA, Voutsinas SG (2017) Aeroelastic stability of idling wind turbines. Wind Energy Sci 2(2):415–437CrossRefGoogle Scholar
  54. Zou F, Riziotis VA, Voutsinas SG, Wang J (2015) Analysis of vortex-induced and stall-induced vibrations at standstill conditions using a free wake aerodynamic code. Wind Energy 18(12):2145–2169CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.JEHO BVRotterdamThe Netherlands

Section editors and affiliations

  • Yuping Sun
    • 1
  1. 1.Goldwind AmericasChicagoUSA

Personalised recommendations