Skip to main content

Examples of Wind Tunnels for Testing Wind Turbine Airfoils

  • Living reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics
  • 143 Accesses

Abstract

Wind tunnel testing of airfoils is an indispensable part of the wind turbine design process. Especially very large wind turbines with 100m+ blades demand robust airfoils with highly accurate aerodynamic data during the design phase which requires special attention for wind tunnel testing. This chapter provides an overview of wind tunnels that are suitable to support these demands in wind turbine airfoil testing. Starting with two historic wind tunnels, NASA Langley Low-Turbulence Pressure Tunnel and Velux wind tunnels which were supporting designers and researchers at some stage since the beginning of wind energy, a total of 13 wind tunnels are elaborated in terms of both their specifications and the measurement methods. Moreover, a summary of different tests performed in each of these wind tunnels is given. Although the challenges in wind turbine airfoil testing are still out there, it can be concluded that both more precise measurement techniques and modern wind tunnels with special features will serve to tackle these challenges in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The average electricity consumption of a European household in 2016 is 1567 kWh according to https://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households#cite_note-1 accessed on 20-05-2019.

  2. 2.

    https://www.dnv.com/services/wind-turbine-design-software-bladed-3775

  3. 3.

    https://www.hawc2.dk/hawc2-info

  4. 4.

    https://www.3ds.com/products-services/simulia/products/simpack/product-modules/wind-modules/

  5. 5.

    http://www.sata.aero/

  6. 6.

    This info is based on communication with Peter Fuglsang (one of the editors of the book and was one of the most frequent users of Velux wind tunnel) in August 2018. The author was not able to find any other info regarding the use of the Velux tunnel in the Velux website.

  7. 7.

    https://wind.nrel.gov/airfoils/OSU_data/

  8. 8.

    Available via https://www.cranfield.ac.uk/facilities/icing-tunnel accessed in March 2021.

References

  • Abbot IH, von Doenhoff AE (1949) Theory of wind sections. Dover Publications Inc, New York, ISBN-10: 0486605868

    Google Scholar 

  • Baek P, Fuglsang P (2009) Experimental detection of transition on wind turbine airfoils, EWEC 2009 Proceedings

    Google Scholar 

  • Bak C (2018) EUDP2018-I AeroLoop Accelerate and enhance quality in aerodynamic and aeroacoustic design loops, Presentation at Wind Energy Denmark 2018, available via https://my.eventbuizz.com/assets/editorImages/1542184444-EUDPAeroLoopV2.pdf cited in May 2019

  • Baldacchino D, Manolesos M, Ferreira CMD, Gonzalez Salcedo A, Aparicio M, Chaviaropoulos T, Diakakis K, Florentie L, Ramos García N, Papadakis G, Sorensen NN, Timmer N, Troldborg N, Voutsinas S, van Zuijlen A (2016) Experimental benchmark and code validation for airfoils equipped with passive vortex generators. J Phys Conf Ser (Online). 753. https://doi.org/10.1088/1742-6596/753/2/022002

  • Baldacchino D, Ferreira C, De Tavernier D, Timmer WA, van Bussel GJW (2018) Experimental parameter study for passive vortex generators on a 30% thick airfoil. https://doi.org/10.1002/we.2191

  • Balaresque N, Bicker S, Fandrich A, Gatz S, Hlling M, Schaffarczyk AP, von Zengen C (2013) Ertragsverbesserungen durch Rotorblattmodifizierungen an bestehenden Windenergieanlagen, Final report of project no: AZ 27118, the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt)

    Google Scholar 

  • Barlas T, van Wingerden JW, Hulskamp A, van Kuik G (2008) Closed-loop control wind tunnel tests on an adaptive wind turbine blade for load reduction, 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2008-1318

    Google Scholar 

  • Barone MF, Berg D (2008) Aerodynamic and aeroacoustic properties of a flatback airfoil: an update, Sandia National Laboratories report, SAND2008-8243C

    Google Scholar 

  • Bertagnolio F (2008) NACA0015 Measurements in LM Wind Tunnel and Turbulence Generated Noise. Roskilde: Danmarks Tekniske Universitet, Forskningscenter Risoe. Risoe-R, No. 1657(EN)

    Google Scholar 

  • Bertagnolio F (2011) Boundary layer measurements of the NACA0015 and implications for noise modeling, Roskilde: Danmarks Tekniske Universitet, Forskningscenter Risoe. Risoe-R, No. 1761(EN)

    Google Scholar 

  • Franck B (2012) EUDP Project ‘Low Noise Airfoil’ – Final Report, DTU Wind Energy-E- 0004

    Google Scholar 

  • Camargo H, Remillieux M, Burdisso R, Crede E, Devenport W (2015) The Virginia Tech stability wind tunnel from an aerodynamic into an aeroacoustic facility, 19th International Congress on Acoustics, Madrid, 2007 Proceedings

    Google Scholar 

  • Ceyhan O Y, Pires O, Munduate X, Sorensen N, Reichstein T, Schaffarczyk AP, Diakakis K, Papadakis G, Daniele E, Schwarz M, Lutz T, Prieto R (2017) Summary of the B lind Test Campaign to predict the High Reynold s number performance of DU00 W 210 airfoil, AIAA 2017-0915

    Google Scholar 

  • Ceyhan O, Timmer WA (2018) Experimental evaluation of a non-conventional flat back airfoil concept for large offshore wind turbines, AIAA 2018-3827

    Google Scholar 

  • Costantini M, Fuchs C, Henne U, Klein C, Ondrus V, Bruse M, Loehr M, Jacobs M (2019) Experimental Analysis of a Wind-Turbine Rotor Blade Airfoil by means of Temperature-Sensitive Paint, AIAA 2019-0800

    Google Scholar 

  • Dahl KS, Fuglsang P (1998) Wind Tunnel Tests of the FFA-W3-241, FFA-W3-301 and NACA 63-430 Airfoils, Riso-R-1041

    Google Scholar 

  • Devenport W, Burdisso RA, Camargo H, Crede E, Remillieux M, Rasnick M, Van Seeters P (2010) Aeroacoustic testing of wind turbine airfoils NREL-SR-500-43471

    Google Scholar 

  • Devenport W, Brown K, Borgoltz A, Paterson E, Bak C, Sorensen N, Olsen A, Gaunaa M, Fischer A, Grinderslev C (2018) Advanced wind tunnel boundary simulation for Kevlar wall aeroacoustic wind tunnels, NATO-OTAN, STO-MP-AVT-284-10

    Google Scholar 

  • Dollinger C, Sorg M, Thiemann P (2013) Aeroacoustic optimization of wind turbine airfoils by combining thermographic and acoustic measurement data, DEWI magazin no. 43, Aug 2013

    Google Scholar 

  • Dollinger C, Balaresque N, Schaffarczyk AP, Fischer A (2016) Thermographic detection of separated flow. J Phys Conf Ser 753:072006

    Article  Google Scholar 

  • Dollinger C, Balaresque N, Gaudern N, Sorg M, Fischer A (2018) Calculation of the power output loss based on thermographic measurement of the leading edge condition, IOP Conf. Series: J Phys Conf Ser 1037:052011

    Google Scholar 

  • Ehrmann RS, Wilcox B, White EB, Maniaci DC (2017) Effect of surface roughness on wind turbine performance, Sandia National Laboratories report, SAND2017-10669

    Google Scholar 

  • Fischer A, Madsen HA, Kragh KA, Bertagnolio F (2014) Analyses of the mechanisms of amplitude modulation of aero-acoustic wind turbine sound, Proceedings of European Wind Energy Association Conference and Exhibition 2014

    Google Scholar 

  • Fischer A, Lylloff OA, Grande E F, Bak C, Mikkelsen R, Ildvedsen SL, Gaunaa M, Olsen A, Beckerlee J (2018) The Acoustic Measurement Setup in the Poul la Cour Wind Tunnel, presented during Dansis seminar: The New Poul la Cour Wind Tunnnel, available via http://dansis.dk/seminars/2018-2/the-new-poul-la-cour-wind-tunnnel/ Cited in May 2019

  • Freudenreich K, Kaiser K, Schaffarczyk AP, Winkler H, Stahl B (2004) Reynolds number and roughness effects on thick airfoils for wind turbines, Wind Engineering, Volume 28, No.5

    Google Scholar 

  • Fuglsang P, Antoniou I, Sorensen NN, Madsen HA (1998) Validation of a wind tunnel testing facility for blade surface pressure measurements, Denmark. Forskningscenter Risoe. Risoe-R No.981(EN)

    Google Scholar 

  • Fuglsang P, Dahl KS, Antoniou I (1999) Wind tunnel tests of the Risoe-A1-18, Risoe-A1-21 and Risoe-A1-24 Airfoils, Riso-R-1112

    Google Scholar 

  • Fuglsang P, Bak C, Gaunaa M, Antoniou I (2004) Design and verification of the risoe-b1 airfoil family for wind turbines. Trans ASME 126:1002–1010. https://doi.org/10.1115/1.1766024

    Google Scholar 

  • Gregorek GM, Hoffmann MJ, Ramsay RR, Janiszewska JM (1995) A study of pitch oscillation and roughness on airfoils used for horizontal axis wind turbines, NREL/TP-442-7386

    Google Scholar 

  • Schewe G (2001) Reynolds-number effects in flow around more-or-less bluff bodies. https:// doi.org/10.1016/S0167-6105(01)00158-1

  • Hann R (2020) Atmospheric ice accretions, aerodynamic icing penalties, and ice protection systems on unmanned aerial vehicles. Thesis for the degree of Philosophiae Doctor, Norwegian University of Science and Technology

    Google Scholar 

  • Hansen MOL, Velte CM, Oye S, Hansen R, Sorensen NN, Madsen J, Mikkelsen R (2015) Aerodynamically shaped vortex generators. https://doi.org/10.1002/we.1842

  • van Hinsberg N (2020) Experimental investigation of the unsteady aerodynamics of a pitching S809 aerofoil at various reduced frequencies and high reynolds numbers, new results in numerical and experimental fluid mechanics XII. DGLR 2018. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 142. Springer, Cham

    Google Scholar 

  • Jin JY, Virk MS (2019) Ice accretion on wind turbine blade: an experimental study of S819 Airfoil. Proceedings IWAIS 2019

    Google Scholar 

  • Jin JY, Virk MS (2020) Experimental study of ice accretion on S826 and S832 wind turbine blade profiles. Cold Regions Science and Technology. https://doi.org/10.1016/j.coldregions.2019.102913

  • Kanev S, Shipurkar U, Baldachino D, Ozdemir H, Peeringa J, Gunes Y (2017) Design for reliable power performance (D4REL): Final report, ECN-E–17-051, 2017

    Google Scholar 

  • Kruse EK, Sorensen NN, Bak C (2018) Predicting the infuence of surface protuberance on the aerodynamic characteristics of a NACA 633-418. J Phys Conf Ser 1037:022008

    Google Scholar 

  • Kuester MS, Brown K, Meyers T, Intaratep N, Borgoltz A, Devenport WJ (2015) Aerodynamic validation of wind turbine airfoil models in the virginia tech stability wind tunnel. North American Wind Energy Academy 2015 Symposium

    Google Scholar 

  • Kuhn T, Altmikus A, Balaresque N, Lippert M, Fabbender A (2015) Numerical replication and improvement of wind tunnel tests for design and off-design operating points of wind turbine airfoils. In: 33rd AIAA applied aerodynamics conference, AIAA 2015-2577

    Google Scholar 

  • Llorente E, Gorostidi A, Jacobs M, Timmer WA, Munduate X, Pires O (2014) Wind tunnel tests of wind turbine airfoils at high reynolds numbers. https://doi.org/10.1088/1742-6596/524/1/012012

  • Lowe T, Beardsley C, Borgoltz A, Devenport WJ, Duetsch-Patel JE, Fritsch DJ, Gargiulo A, Roy CJ, Szoke M, Vishwanathan V (2020) Status of the NASA/Virginia Tech benchmark experiments for CFD validation. https://doi.org/10.2514/6.2020-1584

  • Lutz T, Herrig A, Wurz W, Kamruzzaman M, Krämer E (2007) Design and wind-tunnel verification of low-noise airfoils for wind turbines. https://doi.org/10.2514/1.27658

  • Lutz T, Wolf A (2010) Aerodynamic and acoustic design of wind turbine airfoils with trailing-edge flap. In: 10th German wind energy conference (DEWEK) proceedings

    Google Scholar 

  • Mathew J, Singh A, Madsen J, Leon C A (2016) Serration design methodology for wind turbine noise reduction. J Phys Conf Ser 753:022019

    Article  Google Scholar 

  • Madsen J (2017) Advances in aerodynamics of wind turbine blades, Wind Energy Denmark Annual Event 2017 available via http://www.windenergydenmark.dk/Files/Images/Wind-Energy-Denmark-2015/Presentations-2017/3-Jesper_Madsen-YES.pdf cited in Mar 2021

  • Madsen HA, Ozcakmak OS, Bak C, Troldborg N, Sorensen NN (2019) Transition characteristics measured on a 2MW 80m diameter wind turbine rotor in comparison with transition data from wind tunnel measurements, AIAA 2019-0801, AIAA Scitech 2019 Forum

    Google Scholar 

  • Maniaci DC, White EB, Wilcox B, Langel CM, van Dam CP, Paquette CA (2016) Experimental measurement and CFD model development of thick wind turbine airfoils with leading edge erosion. J Phys Conf Ser 753:022013

    Article  Google Scholar 

  • Mau C, Tescione G, Uzol O (2018) Simultaneous use of wind tunnel testing and CFD, presented during Dansis seminar: The New Poul la Cour Wind Tunnnel, available via http://dansis.dk/seminars/2018-2/the-new-poul-la-cour-wind-tunnnel/, Cited in May 2019

  • Mendez B, Sorensen N, Ramos N, Ceyhan O, Prospathopoulos J, Papadakis G (2014) 2D Airfoil polars for the AVATAR rotor. Avatar EU Project, WP2 Deliverable 2.1

    Google Scholar 

  • Olsen AS, Sorensen NN, Bak C, Gaunaa M, Mikkelsen R, Fischer A (2020) Why is the measured maximum lift in wind tunnels dependent on the measurement method? J Phys Conf Ser 1618(3):032040. https://doi.org/10.1088/1742-6596/1618/3/032040

    Google Scholar 

  • Ostowari C, Naik D (1985) Post-stall wind tunnel data for NACA 44XX series airfoil sections a subcontract report, Prepared under Subcontract No. ASC-78348PB of Rockwell International Corp

    Google Scholar 

  • Pires O, Munduate X, Boorsma K, Ceyhan OY, Madsen HA, Timmer WA (2018) Experimental investigation of surface roughness effects and transition on wind turbine performance. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1037/5/052018

  • Pires O, Munduate X, Ceyhan O, Jacobs M, Snel H (2016) Analysis of high Reynolds numbers effects on a wind turbine airfoil using 2D wind tunnel test data. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/753/2/022047

  • Pires O, Munduate X, Ceyhan O, Jacobs M, Madsen J, Schepers GJ (2016) Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels. https://doi.org/10.1088/1742-6596/749/1/012014

  • Ramsay RR, Hoffmann MJ, Gregorek GM (1995) Effects of grit roughness and pitch oscillations on the S809 airfoil, NREL/TP-442-7817 (Revised 12/99)

    Google Scholar 

  • Schaffarczyk AP, Winkler H, Freudenreich K, Kaiser K, Rebstock R (2003) Reynolds number effects on thick aerodynamic profiles for wind turbines. In: European wind energy conference 2003, Spain

    Google Scholar 

  • Schaffarczyk AP, Arakawa C (2021) A thick aerodynamic profile with regions of negative lift slopeand possible implications on profiles for wind turbine blades. Wind Energy 24:162–173. https://doi.org/10.1002/we.2565

    Article  Google Scholar 

  • Sorensen NN, Hansen MOL, Garcia NR, Florentie L, Boorsma K (2014) Power curve predictions avatar EU project, WP2 Deliverable 2.3

    Google Scholar 

  • Shen WZ, Zhu WJ, Fischer A, Garcia NR, Cheng JT, Chen J, Madsen J (2014) Validation of the CQU-DTU-LN1 series of airfoils. J Phys Conf Ser 555:012093

    Article  Google Scholar 

  • Sommer DM, Tangler JL (2000) Wind-tunnel tests of two airfoils for wind turbines operating at high reynolds numbers, ASME Wind Energy Symposium Reno, Jan 2000, AIAA-2000-0043

    Google Scholar 

  • Sorensen NN, Zahle F, Bak C, Vronsky T (2014) Prediction of the effect of vortex generators on airfoil performance. J Phys Conf Ser 524:012019

    Article  Google Scholar 

  • Stettner M, Reijerkerk MJ, Lünenschloß A, Riziotis V, Croce A, Sartori L, Riva R, Peeringa J M (2016) Stall-induced vibrations of the AVATAR rotor blade. J Phys Conf Ser 753:042019. https://doi.org/10.1088/1742-6596/753/4/042019

    Article  Google Scholar 

  • Timmer WA (2010) Aerodynamic characteristics of wind turbine blade airfoils at high angles-of-attack, The Science of making Torque from Wind 2010

    Google Scholar 

  • Timmer WA, van Rooij RPJOM (2001) European wind energy conference ewec: wind energy for the new millennium, pp 355–358

    Google Scholar 

  • Timmer WA, van Rooij RPJOM (2003) Summary of the Delft University wind turbine dedicated airfoils, 41st Aerospace Sciences Meeting and Exhibit, AIAA-2003-0352

    Google Scholar 

  • Timmer WA, Schaffarczyk A P (2003) The effect of roughness at high Reynolds numbers on the performance of DU 97-W-300Mod. https://doi.org/10.1002/we.136

  • van Rooij RPJOM, Timmer WA (2003) Roughness sensitivity considerations for thick rotor blade airfoils. ASME J Solar Energy Eng. https://doi.org/10.1115/1.1624614

  • von Doenhoff AE, Abbott F T (1947) The Langley two-dimensional low-turbulence pressure tunnel, NACA Technical Note No. 1283

    Google Scholar 

  • Vijayakumar G, Shashank Y, Branlard E, Ananthan S (2020) Enhancement of unsteady and 3D aerodynamic models using machine learning. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1452/1/012065

  • Willert C, Stockhausen G, Klinner J, Beversdorff M, Richard H, Raffel M, Quest J, Becker W (2003) 5th international symposium on particle image velocimetry Busan, Korea, 22–24 Sept 2003, PIV’03 Paper 3122

    Google Scholar 

  • White E, Kutz D, Freels J, Monschke J, Grife R, Sun Y, Chao D (2011) Leading-edge roughness effects on 63(3)-418 Airfoil Performance. In: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition

    Google Scholar 

  • Wolf A, Lutz T, Wurz W, Kramer E, Stalnov O, Seifert A (2015) Trailing edge noise reduction of wind turbine blades by active flow control. Wind Energy 18:90–923. https://doi.org/10.1002/we.1737

    Article  Google Scholar 

  • Wortmann FX (1978) Airfoil profiles for wind turbines, Institut fur Aerodynamik und Gasdynamik, Institute report 78-9, available via IAG University of Stuttgart. https://www.iag.uni-stuttgart.de/dateien/pdf/arbeitsgruppe-laminarwindkanal/Airfoil_Profiles_for_Wind_turbines_Wortmann_1978_LQ.pdf cited in May 2019

  • Yousuf A, Jin JY, Sokolov P, Virk MS (2020) Study of ice accretion on wind turbine blade profiles using thermal infrared imaging, Wind Engineering. https://doi.org/10.1177/0309524X20933948

    Google Scholar 

  • Zahle F, Gaunaa M, Sorensen NN, Bak C (2012) Design and wind tunnel testing of a thick, multielement high-lift airfoil. In: Proceedings of EWEA 2012 – European wind energy conference and exhibition European wind energy association (EWEA)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Ceyhan Yilmaz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ceyhan Yilmaz, Ö. (2021). Examples of Wind Tunnels for Testing Wind Turbine Airfoils. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_28-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics