Skip to main content

Airfoil Design

  • Living reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics
  • 297 Accesses

Abstract

This chapter describes how to carry out an aerodynamic design of airfoils. Performance measures to use when designing airfoils for wind turbines are described where the focus is on the design of airfoils for horizontal axis wind turbines. Mainly the characteristics to be considered in the airfoil design process is described, where the methods used for numerical optimization are only briefly described. The airfoil performance in relation to wind turbine rotor performance is described with the corresponding objective functions, constraints, and design variables in the design process. Also, the available prediction methods are described briefly. A general description of the setup of the design problem in terms of the objective function, the constraints, and the design variables are given, followed by a simple example of how to handle an airfoil design problem. In the end, an outlook is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott IH, von Doenhoff AE (1959) Theory of wing sections. Dover Publications Inc., New York

    Google Scholar 

  • Althaus D (1996) Niedrig-geschwindigkeits-profile, Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

    Google Scholar 

  • Bak C (2013) Aerodynamic design of wind turbine rotors. In: Broendsted P, Nijssen R (eds) Advances in wind turbine blade design and materials. Woodhead Publishing (Woodhead Publishing Series in Energy; No. 47)

    Google Scholar 

  • Bak C, Andersen PB, Madsen HA, Gaunaa M, Fuglsang P, Bove S (2008) Design and verification of airfoils resistant to surface contamination and turbulence intensity, AIAA 2008-7050. In: 26th AIAA applied aerodynamics conference, Honolulu

    Google Scholar 

  • Bak C, Døssing M, Madsen HA, Andersen PB, Gaunaa M, Fuglsang P, Bove S (2008) Verification of airfoil design with focus on transition, Research in Aeroelasticity EFP-2007, Ed. Christian Bak, Risø-R-1649(EN)

    Google Scholar 

  • Bak C, Gaudern N, Zahle F, Vronsky T (2014) Airfoil design: finding the balance between design lift and structural stiffness. J Phys Conf Ser (online) 524(1)

    Google Scholar 

  • Björck A (1990) Coordinates and calculations for the FFA-W1-xxx, FFA-W2-xxx and FFA-W3-xxx series of airfoils for horizontal axis wind turbines, FFA TN 1990-15, FFA, Stockholm

    Google Scholar 

  • Blasques JP (2011) User’s manual for BECAS – a cross section analysis tool for anisotropic and inhomogeneous beam sections of arbitrary geometry, Technical Report Risø-R-1785(EN); RisøDTU; National Laboratory for Sustainable Energy

    Google Scholar 

  • Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94(11):3278–3289. ISSN 0263-8223. https://doi.org/10.1016/j.compstruct.2012.05.002

  • Boorsma K, Munoz A, Mendez B, Gomez S, Irisarri A, Munduate X, Sieros MG, Chaviaropoulos P, Voutsinas S, Prospathopoulos J, Manolesos M, Shen WZ, Zhu WJ, Madsen HA (2015) New airfoils for high rotational speed wind turbines, innwind.eu, Deliverable 2.12

    Google Scholar 

  • Caboni M, Minisci E, Riccardi A (2018) Aerodynamic design optimization of wind turbine airfoils under aleatory and epistemic uncertainty. The Science of Making Torque from Wind (TORQUE 2018), IOP Conf. Series: J Phys Conf Ser 1037:042011. https://doi.org/10.1088/1742-6596/1037/4/042011

  • Cebeci T, Platzer MF, Jang HM, Chen HH (1993) An inviscid–viscous interaction approach to the calculation of dynamic stall initiation on airfoils. J Turbomach 115:714–723

    Article  Google Scholar 

  • Cheng J, Zhu WJ, Fischer A, Garcia NR, Madsen J, Chen J, Shen W Z (2014) Design and validation of the high performance and low noise CQU-DTU-LN1 airfoils. Wind Energy 17(12):1817–1833

    Article  Google Scholar 

  • Drela M (1989) XFOIL: an analysis and design system for low Reynolds number airfoils, Conference on Low Reynolds Number Airfoil Aerodynamics, University of Notre Dame

    Google Scholar 

  • Drela M, Giles MB (1987) Viscous–inviscid analysis of transonic and low Reynolds number airfoils. AIAA J 25:1347–1355

    Article  MATH  Google Scholar 

  • Dulikravich GS (1992) Aerodynamic shape design and optimization: status and trends. J Aircraft 29(6):1020–1026

    Article  Google Scholar 

  • Eppler R (1990) Chap. 3. Airfoil design and data. Springer, Berlin/Heidelberg

    Google Scholar 

  • Eppler R, Somers DM (1980) A computer program for the design and analysis of low-speed airfoils. NASA Technical Memorandum 80210

    Google Scholar 

  • Fuglsang P, Bak C (2004) Development of the risøwind turbine airfoils. Wind Energy 7:145–162

    Article  Google Scholar 

  • Fuglsang P, Dahl KS (1997) Multipoint optimization of thick high lift airfoil wind turbines. In: Proceedings of EWEC97, Dublin, pp 468–471

    Google Scholar 

  • Garcia NR, Sorensen JN, Shen WZ (2014) A quasi-3D viscous-inviscid interaction code: Q3UIC. J Phys Conf Ser (Online) 555:012041. Available from, https://doi.org/10.1088/1742-6596/555/1/012041

  • Grasso F (2014) ECN airfoils for large offshore wind turbines: design and wind tunnel testing, EWEA 2014, Barcelona

    Google Scholar 

  • Hansen TH (2018) Airfoil optimization for wind turbine application. Wind Energy 21:502–514. https://doi.org/10.1002/we.2174

    Article  Google Scholar 

  • Henne PAE (1989) Applied computational aerodynamics. American Institute of Aeronautics and Astronautics, Inc

    MATH  Google Scholar 

  • Hicks RM, Murman E, Vanderplaats GN (1974) An assessment of airfoil design by numerical optimization, NASA TM X-3092

    Google Scholar 

  • Huque Z, Zemmouri G, Harby D, Kommalapati R (2012) Optimization of wind turbine airfoil using nondominated sorting genetic algorithm and pareto optimal front. Hindawi Publishing Corporation, International Journal of Chemical Engineering, Volume 2012, Article ID 193021, 9 pages. https://doi.org/10.1155/2012/193021

  • Huyse L (2001) Free-form airfoil shape optimization under uncertainty using maximum expected value and second-order second-moment strategies, NASA/CR-2001-211020, ICASE Report No. 2001-18

    Google Scholar 

  • Katz J, Plotkin A (2001) Low-speed aerodynamics, 2nd edn. Cambridge University Press, 32 Avenue of the Americas, New York, 10013-2473. ISBN 978-0-521-66219-2 Hardback, ISBN 978-0-521-66552-0 Paperback

    Google Scholar 

  • Lutz T, Wuerz W, Herrig A, Braun K, Wagner S (2004) Numerical optimization of silent airfoil sections. Institut für Aerodynamik und Gasdynamik (IAG), Universität Stuttgart, Pfaffenwaldring 21, D-70550 Stuttgart

    Google Scholar 

  • Mendez B, Munduate X, San Miguel U (2014) Airfoil family design for large offshore wind turbine blades. The science of making torque from wind (TORQUE 2014), IOP Publishing Journal of Physics: Conference Series 524, 012022. https://doi.org/10.1088/1742-6596/524/1/012022

  • Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  • Menter F, Langtry R, Likki S, Suzen Y, Huang P, Volker S (2004) A correlation-based transition model using local variables, Part I – model formulation. In: 2004 Proceedings of ASME turbo expo, power for land, sea, and air ASME. GT2004-53452 (Vienna)

    Google Scholar 

  • Michelsen JA (1992) Basis3D–a platform for development of multiblock PDE solvers, Tech. Rep. AFM 92-05, Technical University of Denmarl

    Google Scholar 

  • Michelsen JA (1994) Block structured multigrid solution of 2D and 3D elliptic PDEs, Tech. Rep. AFM 94-06, Technical University of Denmarl

    Google Scholar 

  • OpenFOAM (2018) www.openfoam.com

  • Özçakmak Ö S (2020) Laminar-turbulent boundary layer transition characteristics of wind turbine rotors: a numerical and experimental investigation, DTU Wind Energy. DTU Wind Energy Ph.D., Technical University of Denmarl

    Google Scholar 

  • Quagliarella D, Cioppa AD (1995) Genetic algorithms applied to the aerodynamic design of transonic airfoils. J Aircr 32(4):889–891. https://doi.org/10.2514/3.46810

    Article  Google Scholar 

  • Ribeiro AFP, Awruch AM, Gomes HM (2012) An airfoil optimization technique for wind turbines. Appl Math Model 36:4898–4907

    Article  Google Scholar 

  • Selig MS, Maughmer MD (1992) Generalized multipoint inverse airfoil design. AIAA J 30(II)

    Google Scholar 

  • Selig MS, Guglielmo JJ, Broeren AP, Giguere P (1995) Summary of low-speed airfoil data. Volumes 1–3, Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801

    Google Scholar 

  • Sorensen NN (1995) General purpose flow solver applied to flow over hills, Tech. Rep. Risø-R-827(EN) Risoe National Laboratory, Denmark

    Google Scholar 

  • Tangler JL, Somers DM (1995) NREL airfoil families for HAWT’s. In: Proceedings of WINDPOWER’95, Washington, D.C., pp 117–123

    Google Scholar 

  • Timmer WA, van Rooij RPJOM (2003) Summary of the delft university wind turbine dedicated airfoils. In: Proceedings of AIAA, AIAA-2003-0352, Reno

    Google Scholar 

  • Vanderplaats GN (1984) Numerical optimization techniques for engineering design with applications. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  • van Rooij RPJOM (1996) Modifi cation of the boundary layer in XFOIL for improved airfoil stall prediction, Report IW-96087R, Delft University of Technology, Delft

    Google Scholar 

  • Zahle F, Bak C, Soerensen NN, Vronsky T, Gaudern N (2014) Design of the LRP airfoil series using 2D CFD. The science of making torque from wind 2014 (TORQUE 2014). J Phys Conf Ser 524:012020. https://doi.org/10.1088/1742-6596/524/1/012020

Download references

Acknowledgements

Thank you to my colleagues at DTU Wind Energy, Denmark, and colleagues at other universities and in companies for inspiring discussions. Special thanks to my colleague Anders S. Olsen (DTU Wind Energy, Denmark) for reading the manuscript and making very useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bak .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bak, C. (2021). Airfoil Design. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_3-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics