Skip to main content

3D Wind Tunnel Experiments

Measurement Techniques

  • Living reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics

Abstract

A lot of effort was recently spent by the wind energy community on developing wind tunnel experiments. These complement full-scale field tests as more measurements can be implemented with less effort, and the overall uncertainty about data is generally lower since environmental conditions are precisely controlled. Progress in wind tunnel experiments and the quality of resulting measurements is closely related to technology of wind turbine models. These are often highly-sensorized and capable of reproducing the aero-servo-elastic response of full-scale machines. This section of the handbook introduces the reader to measurement techniques available in 3D wind tunnel experiments. It provides a review of the turbine model tests that were carried out in the topics of turbine control, wake modeling, wind farm control and floating turbines. The state-of-the art of turbine models technology is presented with reference to some recent examples. Typical measurements of turbine and wind tunnel sensors are described, showing what it is possible to measure and how.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bak C, Zahle F, Bitsche R, Taeseong K, Yde A, Henriksen LC, Hansen MH, Jose JPAA, Gaunaa M, Natarajan A (2013) The DTU 10-MW Reference Wind Turbine. DTU Wind Energy Report

    Google Scholar 

  • Barlas T, van Wingerden JW, Hulskamp A, van Kuik G (2011) Closed-loop control wind tunnel tests on an adaptive wind turbine blade for load reduction

    Google Scholar 

  • Bayati I, Belloli M, Bernini L, Zasso A (2016) Wind tunnel validation of AeroDyn within LIFES50+project: imposed surge and pitch tests. J Phys Conf Ser 753:092001

    Article  Google Scholar 

  • Bayati I, Belloli M, Bernini L, Giberti H, Zasso A (2017a) Scale model technology for floating offshore wind turbines. IET Renew Power Gener 11(9):1120–1126

    Article  Google Scholar 

  • Bayati I, Belloli M, Bernini L, Zasso A (2017b) Aerodynamic design methodology for wind tunnel tests of wind turbine rotors. J Wind Eng Ind Aerodyn 167:217–227

    Article  Google Scholar 

  • Belloli M, Bayati I, Facchinetti A, Fontanella A, Giberti H, La Mura F, Taruffi F, Zasso A (2020) A hybrid methodology for wind tunnel testing of floating offshore wind turbines. Ocean Eng 210:1–15

    Article  Google Scholar 

  • Berger F, Kühn M (2018) Experimental investigation of dynamic inflow effects with a scaled wind turbine in a controlled wind tunnel environment. J Phys Conf Ser 1037:052017

    Article  Google Scholar 

  • Berger F, Kröger L, Onnen D, Petrović V, Kühn M (2018) Scaled wind turbine setup in a turbulent wind tunnel. J Phys Conf Ser 1104:012026

    Article  Google Scholar 

  • Bottasso CL, Campagnolo F, Petrovic V (2014) Wind tunnel testing of scaled wind turbine models: beyond aerodynamics. J Wind Eng Ind Aerodyn 127:11–28

    Article  Google Scholar 

  • Bredmose H, Lemmer F, Borg M, Pegalajar-Jurado A, Mikkelsen RF, Stoklund Larsen T, Fjelstrup T, Yu W, Lomholt AK, Boehm L, Azcona Armendariz J (2017) The Triple Spar campaign: model tests of a 10 MW floating wind turbine with waves, wind and pitch control. Energy Proc 137:58–76. 14th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2017

    Google Scholar 

  • Campagnolo F, Bottasso CL, Bettini P (2014) Design, manufacturing and characterization of aero-elastically scaled wind turbine blades for testing active and passive load alleviation techniques within a ABL wind tunnel. J Phys Conf Ser 524:012061

    Article  Google Scholar 

  • Campagnolo F, Petrović V, Schreiber J, Nanos EM, Croce A, Bottasso CL (2016) Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization. J Phys Conf Ser 753:032006

    Article  Google Scholar 

  • Campagnolo F, Schreiber J, Garcia AM, Bottasso CL (2017) Wind tunnel validation of a wind observer for wind farm control, pp 640–647

    Google Scholar 

  • Campagnolo F, Molder A, Schreiber J, Bottasso CL (2019) Comparison of analytical wake models with wind tunnel data. J Phys Conf Ser 1256:012006

    Article  Google Scholar 

  • Campagnolo F, Schreiber J, Bottasso CL (2020) Wake deflection control with wind direction changes: wind tunnel comparison of different wind farm flow models. Proc Am Control Conf 2020:4817–4823

    Google Scholar 

  • Frederik J, Kröger L, Gülker G, van Wingerden J-W (2018) Data-driven repetitive control: wind tunnel experiments under turbulent conditions. Control Eng Pract 80:105–115

    Article  Google Scholar 

  • Goupee A, Koo B, Kimball R, Lambrakos K, Dagher H (2012) Experimental comparison of three floating wind turbine concepts, vol 136

    Google Scholar 

  • Goupee A, Fowler M, Kimball R, Helder J, Ridder EJ (2014) Additional wind/wave basin testing of the DeepCwind semisubmersible with a performance-matched wind turbine. In: 33rd international conference on Ocean, Offshore and Arctic Engineering (OMAE) – San Francisco, 9B

    Google Scholar 

  • Goupee AJ, Kimball RW, Dagher HJ (2017) Experimental observations of active blade pitch and generator control influence on floating wind turbine response. Renew Energy 104:9–19

    Article  Google Scholar 

  • Gueydon S, Bayati I, de Ridder EJ (2020) Discussion of solutions for basin model tests of fowts in combined waves and wind. Ocean Eng 209:107288

    Article  Google Scholar 

  • Hand MM, Simms DA, Fingersh LJ, Jager DW, Cotrell JR, Schreck S, Larwood SM (2001) Unsteady aerodynamics experiment phase vi: wind tunnel test configurations and available data campaigns. Technical report

    Google Scholar 

  • Houtzager I, van Wingerden J, Verhaegen M (2011) Rejection of periodic wind disturbances on an experimental “smart” rotor section using lifted repetitive control. In: 2011 IEEE international conference on control applications (CCA), pp 264–271

    Google Scholar 

  • Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical Report, National Renewable Energy Laboratory

    Book  Google Scholar 

  • Kimball R, Goupee AJ, Fowler MJ, de Ridder E, Helder J (2014) Wind/Wave Basin Verification of a Performance-Matched Scale-Model Wind Turbine on a Floating Offshore Wind Turbine Platform. Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. Ocean Renewable Energy. San Francisco, California, June 8–13, V09BT09A025. ASME. https://doi.org/10.1115/OMAE2014-24166

  • Koo B, Goupee A, Lambrakos K, Kimball R (2012) Model tests for a floating wind turbine on three different floaters, vol 136

    Google Scholar 

  • Michos A, Bergeles G, Athanassiadis N (1983) Aerodynamic characteristics of naca 0012 airfoil in relation to wind generators. Wind Eng 7(4):247–262

    Google Scholar 

  • Mikkelsen R (2015) The dtu 10 mw 1:60 model scale wind turbine blade. Technical report

    Google Scholar 

  • Nanos EM, Kheirallah N, Campagnolo F, Bottasso CL (2018) Design of a multipurpose scaled wind turbine model. J Phys Conf Ser 1037:052016

    Article  Google Scholar 

  • Nanos EM, Robke J, Heckmeier FM, Cerny M, Bottasso CL, Jones KL, Iungo GV (2019) Wake characterization of a multipurpose scaled wind turbine model

    Google Scholar 

  • Petrović V, Berger F, Neuhaus L, Hölling M, Kühn M (2019) Wind tunnel setup for experimental validation of wind turbine control concepts under tailor-made reproducible wind conditions. J Phys Conf Ser 1222:012013

    Article  Google Scholar 

  • Ross I, Altman A (2011) Wind tunnel blockage corrections: review and application to savonius vertical-axis wind turbines. J Wind Eng Ind Aerodyn 99(5):523–538

    Article  Google Scholar 

  • Sauder T, Chabaud V, Thys M, Bachynski EE, Sæther LO (2016) Real-time hybrid model testing of a braceless semi-submersible wind turbine: part I – the hybrid approach. In: International conference on offshore mechanics and arctic engineering, Volume 6: Ocean Space Utilization; Ocean Renewable Energy

    Google Scholar 

  • Schreiber J, Nanos EM, Campagnolo F, Bottasso CL (2017) Verification and calibration of a reduced order wind farm model by wind tunnel experiments. J Phys Conf Ser 854:012041

    Article  Google Scholar 

  • Snel H, Schepers JG, Montgomerie B (2007) The MEXICO project (model experiments in controlled conditions): the database and first results of data processing and interpretation. J Phys Conf Ser 75:012014

    Article  Google Scholar 

  • van Solingen E, Navalkar S, van Wingerden J-W (2014) Experimental wind tunnel testing of linear individual pitch control for two-bladed wind turbines. J Phys Conf Ser 524:012056

    Article  Google Scholar 

  • van Wingerden J, Hulskamp A, Barlas T, Houtzager I, Bersee H, van Kuik G, Verhaegen M (2011) Two-degree-of-freedom active vibration control of a prototyped “smart” rotor. IEEE Trans Control Syst Technol 19(2):284–296

    Article  Google Scholar 

  • Vermeer LJ, Sørensen JN, Crespo A (2003) Wind turbine wake aerodynamics. Prog Aerospace Sci 39(6):467–510

    Article  Google Scholar 

  • Wang J, Foley S, Nanos EM, Yu T, Campagnolo F, Bottasso CL, Zanotti A, Croce A (2017) Numerical and experimental study of wake redirection techniques in a boundary layer wind tunnel. J Phys Conf Ser 854:012048

    Article  Google Scholar 

  • Whale J, Papadopoulos KH, Anderson CG, Helmis CG, Skyner DJ (1996) A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments. Solar Energy 56(6):621–633

    Article  Google Scholar 

  • Yu W, Lemmer F, Bredmose H, Borg M, Pegalajar-Jurado A, Mikkelsen RF, Stoklund Larsen T, Fjelstrup T, Lomholt AK, Boehm L, Schlipf D, Azcona Armendariz J, Cheng PW (2017) The triple spar campaign: implementation and test of a blade pitch controller on a scaled floating wind turbine model. Energy Proc 137:323–338. 14th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Zasso .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zasso, A., Fontanella, A., Belloli, M. (2021). 3D Wind Tunnel Experiments. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_31-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics