Skip to main content

Turbulent Inflow Models

  • Living reference work entry
  • First Online:

Abstract

This chapter gives a short overview of different methods used for turbulence generation in the field of wind energy. The wind fields can be used as an inflow for computational fluid dynamics or blade element momentum-based simulations. For all presented models, the mathematical background is given, and it is discussed which advantages and drawbacks they have. The main focus lies on statistical properties in terms of one- and two-point statistics. This includes variance, autocorrelations, cross correlations, and spectral properties. First different recycling methods are explained, namely, the weak and the strong recycling methods. In the following sections, synthetic coherent eddy methods are shown which approximate the turbulent properties well. Those are the digital filtering method and the random spots method. Also an inflow model based on continuous-time random walks is demonstrated which considers higher-order statistics, the increment statistics. In the last section, two spectral methods are in the focus which are used in a wide range in the field of wind energy, the Sandia method, and the Mann model.

This is a preview of subscription content, log in via an institution.

References

  • Akselvoll K, Moin P (1993) Application of the dynamic localization model to large-eddy simulation of turbulent flow over a backward facing step. ASME-PUBLICATIONS-FED 162:1–1

    Google Scholar 

  • Akselvoll K, Moin P (1996) Large-eddy simulation of turbulent confined coannular jets. J Fluid Mech 315:387-411. https://doi.org/10.1017/S0022112096002479

    MATH  Google Scholar 

  • Bazdidi-Tehrani F, Badaghi D, Kiamansouri M, Jadidi M (2017) Analysis of various inflow turbulence generation methods in large eddy simulation approach for prediction of pollutant dispersion around model buildings. J Comput Methods Eng 35:85–112

    Google Scholar 

  • Berg J, Natarajan A, Mann J, Patton EG (2016) Gaussian vs non-Gaussian turbulence: impact on wind turbine loads. Wind Energy 19(11):1975–1989

    Google Scholar 

  • Bierbooms WAAM, Dragt JB (1996) SWING 4: a stochastic 3D wind field generator for design calculations. In: Proceedings of European Union Wind Energy Conference, EUWEC 1996, pp 942–945

    Google Scholar 

  • Bos R (2017) Extreme gusts and their role in wind turbine design. Ph.D. Thesis

    Google Scholar 

  • Breuer M (2018) Effect of inflow turbulence on an airfoil flow with laminar separation bubble: an LES study. Flow Turbul Combust 101(2):433–456

    Google Scholar 

  • Chung YM, Sung HJ (1997) Comparative study of inflow conditions for spatially evolving simulation. AIAA J 35:269–274

    MATH  Google Scholar 

  • Dörenkämper M, Witha B, Steinfeld G, Heinemann D, Kühn M (2015) The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms. J Wind Eng Ind Aerodyn 144:146–153

    Google Scholar 

  • Dimitrov N, Kelly MC, Vignaroli A, Berg J (2018) From wind to loads: wind turbine site-specific load estimation with surrogate models trained on high-fidelity load databases. Wind Energy Sci 3(2):767–790

    Google Scholar 

  • Eriksson O, Nilsson K, Breton S-P, Ivanell S (2014) The Science of Making Torque from Wind. Analysis of long distance wakes behind a row of turbines–a parameter study. J Phys Conf Ser 524(1):012152. The Science of Making Torque from Wind 2014 (TORQUE 2014) 18–20 June 2014, Copenhagen

    Google Scholar 

  • Gontier H, Schaffarczyk AP, Kleinhans D, Friedrich R (2007) A comparison of fatigue loads of wind turbine resulting from a non-Gaussian turbulence model vs. standard ones. J Phys Conf Ser 75(1):012070

    Google Scholar 

  • Han Y, Stoellinger M, Naughton J (2016) Large eddy simulation for atmospheric boundary layer flow over flat and complex terrains. J Phys Conf Ser 753:032044

    Google Scholar 

  • IEC61400 IEC (2005) 61400-1: wind turbines part 1: design requirements. Int Electrotechnical Commission 177:68–73

    Google Scholar 

  • Jarrin N, Benhamadouche S, Laurence D, Prosser R (2006) A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int J Heat Fluid Flow 27(4):585–593

    MATH  Google Scholar 

  • Jonkman B, Jonkman J (2016) FAST v8.16.00a-bjj. NREL. https://wind.nrel.gov/nwtc/docs/README_FAST8.pdf

  • Kaimal JC, Wyngaard JCJ, Izumi Y, Cote OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98(417), 563–589

    Google Scholar 

  • Kim Y, Jost E, Bangga G, Weihing P, Lutz T (2016) Effects of ambient turbulence on the near wake of a wind turbine. J Phys Conf Ser 753:032047

    Google Scholar 

  • Klein M, Sadiki A, Janicka J (2001a) Influence of the boundary conditions on the direct numerical simulation of a plane turbulent jet. TSFP digital library online. Begel House Inc.

    Google Scholar 

  • Klein M, Sadiki A, Janicka J (2001b) Influence of the inflow conditions on the direct numerical simulation of primary breakup of liquid jets. In: Proceedings of ILASS Europe, 17. Annual Conference on Liquid Atomization and Spray Systems, pp 475–480

    Google Scholar 

  • Klein M, Sadiki A, Janicka J (2003) A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys 186(2):652–665

    MATH  Google Scholar 

  • Kleinhans D, Stochastische Modellierung komplexer Systeme. Ph.D. Thesis

    Google Scholar 

  • Kolmogorov AN (1991) Dissipation of energy in the locally isotropic turbulence. Proc R Soc Lond Ser A Math Phys Sci 434(1890):15–17

    MathSciNet  MATH  Google Scholar 

  • Kornev N, Hassel E (2007) Method of random spots for generation of synthetic inhomogeneous turbulent fields with prescribed autocorrelation functions. Commun Numer Methods Eng 23(1):35–43

    MathSciNet  MATH  Google Scholar 

  • Kubilay A, Derome D, Carmeliet J (2016) Analysis of time-resolved wind-driven rain on an array of low-rise cubic buildings using large eddy simulation and an Eulerian multiphase model. Build Environ 114:68–81

    Google Scholar 

  • Larsen TJ, Hansen AM (2007) How 2 HAWC2, the user’s manual. Risø National Laboratory

    Google Scholar 

  • Le H, Moin P, Kim J (1997) Direct numerical simulation of turbulent flow over a backward-facing step. J Fluid Mech 330:349–374

    MATH  Google Scholar 

  • Lund TS, Wu X, Kyle D (1998)Squires: generation of turbulent inflow data for spatially-developing boundary layer simulations. J Comput Phys 140(2):233–258

    MathSciNet  MATH  Google Scholar 

  • Lygren M, Andersson HI (1999) Influence of boundary conditions on the large-scale structures in turbulent plane couette flow. In: TSFP digital library online. Begel House Inc.

    Google Scholar 

  • Mücke T, Kleinhans D, Peinke J (2011) Atmospheric turbulence and its influence on the alternating loads on wind turbines. Wind Energy 14(2):301–316

    Google Scholar 

  • Mann J (1994) The spatial structure of neutral atmospheric surface-layer turbulence. J Fluid Mech 273:141–168

    MATH  Google Scholar 

  • Mann J (1998) Wind field simulation. Probab Eng Mech 13(4):269–282

    Google Scholar 

  • Mayor SD, Spalart PR, Tripoli GJ (2002) Application of a perturbation recycling method in the large-eddy simulation of a mesoscale convective internal boundary layer. J Atmos Sci 59(15):2385–2395

    Google Scholar 

  • Morales A, Wächter M, Peinke J (2012) Characterization of wind turbulence by higher-order statistics. Wind Energy 15(3):391–406

    Google Scholar 

  • Nobach H (1998) Verarbeitung stochastisch abgetasteter Signale: Anwendung in der Laser-Doppler-Anemometrie. Shaker, Aachen

    Google Scholar 

  • Paulsen S (2018) Uwe: simulation of shear and turbulence impact on wind turbine performance

    Google Scholar 

  • Reinwardt I, Gerke N, Dalhoff P, Steudel D, Moser W (2018) Validation of wind turbine wake models with focus on the dynamic wake meandering model. J Phys Conf Ser 1037:072028

    Google Scholar 

  • Reiso M, Muskulus M (2014) Resolution of tower shadow models for downwind mounted rotors and its effects on the blade fatigue. J Phys Conf Ser 555:012084

    Google Scholar 

  • Sale D, Aliseda A (2016) The flow field of a two-bladed horizontal axis turbine via comparison of RANS and LES simulations against experimental PIV flume measurements. In: Proceedings of the 4th Marine Energy Technology, at Washington, DC

    Google Scholar 

  • Schwarz CM, Ehrich S, Martin R, Peinke J (2018) Fatigue load estimations of intermittent wind dynamics based on a Blade Element Momentum method. J Phys Conf Ser 1037:072040

    Google Scholar 

  • Spalart PR (1988) Direct simulation of a turbulent boundary layer up to RΘ = 1410. J Fluid Mech 187:61–98

    MATH  Google Scholar 

  • Stanley SA, Sarkar S (2000) Influence of nozzle conditions and discrete forcing on turbulent planar jets. AIAA J 38(9):1615–1623

    Google Scholar 

  • Szasz RZ, Fuchs L (2010) Computations of the flow around a wind turbine: grid sensitivity study and the influence of inlet conditions. Notes Numer Fluid Mech 110:345–352

    Google Scholar 

  • Tabrizi AB, Whale J, Lyons T, Urmee T, Peinke J (2017) Modelling the structural loading of a small wind turbine at a highly turbulent site via modifications to the Kaimal turbulence spectra. Renew Energy 105:288–300

    Google Scholar 

  • Troldborg N, Sørensen JN, Mikkelsen R (2007) Actuator line simulation of wake of wind turbine operating in turbulent inflow. J Phys Conf Ser 75(1):012063. The Science of Making Torque from Wind 28–31, Technical University of Denmark

    Google Scholar 

  • van der Laan MP, Andersen S (2018) The turbulence scales of a wind turbine wake: a revisit of extended k-epsilon models. J Phys Conf Ser 1037:072001

    Google Scholar 

  • Veers P (1984) Modeling stochastic wind loads on vertical axis wind turbines. In: 25th Structures, Structural Dynamics and Materials Conference, p 910

    Google Scholar 

  • Veers PS (1988) Three-dimensional wind simulation. Sandia National Labs, Albuquerque

    Google Scholar 

  • Von Karman T (1948) Progress in the statistical theory of turbulence. Proc Natl Acad Sci USA 34(11):530

    MathSciNet  MATH  Google Scholar 

  • Wagner R, Courtney M, Larsen TJ, Paulsen US (2010) Simulation of shear and turbulence impact on wind turbine performance. Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Ehrich .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ehrich, S. (2020). Turbulent Inflow Models. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_42-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics