Skip to main content

Industrial Wake Models

  • Living reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics

Abstract

This chapter deals with the description of wind turbine wakes by means of reduced-complexity flow models. These models offer the appeal to conduct a vast number of simulations of the wake flow for different atmospheric boundary conditions in short time, thus, they are usually the models of choice in the wind energy industry for assessing and optimizing long-term energy production. The intent of the chapter is to provide an overview over a subset of the most prominent wake models, their physical approximations, and the resulting equations that the models use to describe the flow. At the end, two algorithms are presented to derive a converged wind farm flow by superimposing the wake deficits derived from the presented single wake models. This offers the readers the opportunity to implement a wind farm flow model with their wake model of choice themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ainslie JF (1988) Calculating the flowfield in the wake of wind turbines. J Wind Eng Indus Aerodyn 27(1):213–224

    Article  Google Scholar 

  • Andersen SJ, Sørensen JN, Ivanell S, Mikkelsen RF (2014) 524:012161

    Google Scholar 

  • Bastankhah M, Portè-Agel F (2014) A new analytical model for wind-turbine wakes. Renew Energy 70:116–123

    Article  Google Scholar 

  • Bastankhah M, Portè-Agel F (2016) Experimental and theoretical study of wind turbine wakes in yawed conditions. J Fluid Mech 806:506–541

    Article  Google Scholar 

  • Bastankhah M, Welch BL, Martínez-Tossas LA, King J, Fleming P (2021) Analytical solution for the cumulative wake of wind turbines in wind farms. J Fluid Mech 911:A53

    Article  MathSciNet  Google Scholar 

  • Beck H, Trabucchi D, Bitter M, Kühn M (2014) The Ainslie wake model – An update for multi megawatt turbines based on state-of-the-art wake scanning techniques. EWEA, Barcelona, Spain

    Google Scholar 

  • Centurelli G, Vollmer L, Schmidt J, Dörenkämper M, Schröder M, Lukassen L, Peinke J (2021) Evaluating Global Blockage engineering parametrizations with LES, Wake Conference (in review)

    Book  Google Scholar 

  • Churchfield MJ, Schreck SJ, Martinez LA, Meneveau C, Spalart PR (2017) An advanced actuator line method for wind energy applications and beyond. In: 35th wind energy symposium

    Google Scholar 

  • Crespo A, Hernández J (1996) Turbulence characteristics in wind-turbine wakes. J Wind Eng Ind Aerodyn 61(1):71–85

    Article  Google Scholar 

  • Frandsen S (2007) Turbulence and turbulence-generated structural loading in wind turbine clusters Ph.D. Thesis (DTU, Risø National Laboratory)

    Google Scholar 

  • Frandsen S, Gravesen H, Jørgensen L, Eriksson C, Halling KM, Skjærbæk P, Jørgensen U, Werner NE, Lemming J, Bjerregaard E (2001) Recommendation for technical approval of offshore wind turbines (Danish Energy Agency)

    Google Scholar 

  • Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S, Højstrup J, Thøgersen M (2006) Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 9(1–2):39–53

    Article  Google Scholar 

  • Gögmen T, van der Laan P, Réthoré P-E, Pena Diaz A, Larsen GC, Ott S (2016) Wind turbine wake models developed at the Technical University of Denmark: a review. Renew Sustain Energy Rev 60:752–769

    Article  Google Scholar 

  • IEC-61400-1 (2019) Wind energy generation systems – Part 1: Design requirements

    Google Scholar 

  • Ishihara T, Qian G-W (2018) A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects. J Wind Eng Ind Aerodyn 177:275–292

    Article  Google Scholar 

  • Jensen NO (1983) A note on wind generator interaction (2411)

    Google Scholar 

  • El Kasmi A, Masson C (2008) An extended k-ε model for turbulent flow through horizontal-axis wind turbines. J Wind Eng Ind Aerodyn 96(1):103–122

    Article  Google Scholar 

  • Katic I, Højstrup J, Jensen NO (1987) A simple model for cluster efficiency. In: Palz W, Sesto E (eds) EWEC’86. Proceedings, vol 1, pp 407–410 (A. Raguzzi 1987)

    Google Scholar 

  • Keane A, Olmos Aguirre PE, Ferchland H, Clive P, Gallacher D (2016) An analytical model for a full wind turbine wake. J Phys Conf Ser 753:032039

    Article  Google Scholar 

  • van der Laan MP, Andersen SJ (2018) The turbulence scales of a wind turbine wake: A revisit of extended k-epsilon models. J Phys Conf Ser 1037:072001

    Article  Google Scholar 

  • Paul van der Laan M, Sørensen NN, Réthoré P-E, Mann J, Kelly MC, Troldborg N, Gerard Schepers J, Machefaux E (2015) An improved k-μ model applied to a wind turbine wake in atmospheric turbulence. Wind Energy 18(5):889–907

    Article  Google Scholar 

  • Lange B, Waldl H-P, Guerrero AG, Heinemann D, Barthelmi RJ (2003) Modelling of offshore wind turbine wakes with the wind farm program FLaP. Wind Energy 6(1):87–104

    Article  Google Scholar 

  • Lanzilao L, Meyers J (2020) A new wake-merging method for wind-farm power prediction in presence of heterogeneous background velocity fields

    Google Scholar 

  • Larsen GC, Madsen Aagaard H, Larsen TJ, Troldborg N (2008) Wake modeling and simulation, Denmark. Forskningscenter Risoe. Risoe-R (Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi)

    Google Scholar 

  • Lissaman PBS (1979) Energy effectiveness of arbitrary arrays of wind turbines. J Energy 3(6): 323–328

    Article  Google Scholar 

  • Machefaux E, Larsen GC, Murcia Leon JP (2015) Engineering models for merging wakes in wind farm optimization applications. J Phys Conf Ser 625:012037

    Article  Google Scholar 

  • Moriarty P, Rodrigo J, Gancarski P, Chuchfield M, Naughton J, Hansen KS, Machefaux E, Maguire A, Castellani F, Terzi L, Breton SP, Ueda Y (2014) IEA-task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models. J Phys Conf Ser 524:06

    Google Scholar 

  • Niayifar A, Porté-Agel F (2015) A new analytical model for wind farm power prediction. J Phys Conf Ser 625:012039

    Article  Google Scholar 

  • Ott S, Berg J, Nielsen M (2011) Linearised CFD models for wakes, Denmark. Forskningscenter Risoe. Risoe-R (Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi

    Google Scholar 

  • Pirrung GR, van der Laan MP, Ramos-Garcìa N, Meyer Forsting AR (2020) A simple improvement of a tip loss model for actuator disc simulations. Wind Energy 23(4):1154–1163

    Article  Google Scholar 

  • Porte-Agel F, Bastankhah M, Shamsoddin S (2020) Wind-turbine and wind-farm flows : a review. Boundary-layer Meteorol 174:1–59

    Article  Google Scholar 

  • Réthoré P-E, van der Laan P, Troldborg N, Zahle F, Sørensen NN (2014) Verification and validation of an actuator disc model. Wind Energy 17(6):919–937

    Article  Google Scholar 

  • Schmidt J, Stoevesandt B (2014)) Wind farm layout optimisation using wakes from computational fluid dynamics simulations. In: EWEA conference proceedings

    Google Scholar 

  • Schmidt J, Stoevesandt B (2015) Wind farm layout optimisation in complex terrain with CFD wakes. In: EWEA conference proceedings

    Google Scholar 

  • Schmidt J, Requate N, Vollmer L (2021) Wind farm yield and lifetime optimization by smart steering of wakes, Wake Conference (in review)

    Book  Google Scholar 

  • Schreiber J, Balbaa A, Bottasso CL (2020) Brief communication: a double-Gaussian wake model. Wind Energy Sci 5(1):237–244

    Article  Google Scholar 

  • Vogel CR, Willden RHJ (2020) Investigation of wind turbine wake superposition models using Reynolds-averaged Navier-Stokes simulations. Wind Energy 23(3): 593–607

    Article  Google Scholar 

  • von Brandis A, Centurelli G, Dörenkämper M, Schmidt J, Vollmer L (2021) Investigation of mesoscale wind direction changes and their consideration in engineering models, in preparation

    Google Scholar 

  • Witha B, Steinfeld G, Heinemann D (2014) High-resolution offshore wake simulations with the LES Model PALM. In: Hölling M, Peinke J, Ivanell S (eds) Wind energy – impact of turbulence, pp. 175–181. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Schmidt .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schmidt, J., Vollmer, L. (2021). Industrial Wake Models. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_49-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_49-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics