Skip to main content

Wake Meandering

  • Living reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics
  • 132 Accesses

Abstract

The present chapter deals with wake meandering – its physics, its modeling, and its consequences for production and loading of wind turbines erected in wind farms.

Wake meandering is the phenomenon describing the dynamics of wind turbine wakes. Nowadays there is almost unanimous agreement in the wind energy community that wake meandering is caused by large turbulent eddies in the atmospheric boundary layer. In the introductory part of this chapter, an accounting of the development leading to this conclusion will be given. This includes both full-scale experiments using advanced lidar technology, scaled wind tunnel experiments using both boundary layer wind tunnels and conventional wind tunnels, and last, but not least, detailed unsteady computational fluid dynamics large eddy simulations with wind turbines modeled as actuator lines.

Recognizing the fundamental physics behind the wake meandering phenomenon, both high-fidelity and medium-fidelity modeling approaches are described. Being related to large-scale turbulence structures in the atmospheric boundary layer, impact from atmospheric boundary layer stability should be expected, and this important aspect is therefore also included in the modeling part.

The chapter is concluded with various example applications ranging from wind turbine production prediction over wind turbine load prediction to optimal wind farm layout, for which both accurate production and load prediction are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It should be noted that other approaches exist to spin up the precursor simulation. Such alternatives are usually associated with modeling of molecular viscosity.

  2. 2.

    This is contrary to conventional power production optimization, where stationary flow wind farm flow fields suffice, where WTs are modeled simplistically as C p and C t curves, and where cost models obviously are not needed.

References

  • Abkar M, Porte-Agel F (2015) Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study. Phys Fluids 27(3):035104

    Article  Google Scholar 

  • Abramowitz M, Stegun A (1970) Handbook of mathematical functions. Dover, New York

    MATH  Google Scholar 

  • Ainslie JF (1988) Calculating the flow field in the wake of wind turbines. J Wind Eng Ind Aerodyn 27(1):213–224

    Article  Google Scholar 

  • Andersen PS, Krabbe U, Lundsager P, Petersen H (1980) Basismateriale for Beregning af propelvindmøller. Risø-M-2153 (in danish)

    Google Scholar 

  • Baker RW, Walker SN (1984) Wake measurements behind a large horizontal axis wind turbine generator. Sol Energy 33(1):5–12

    Article  Google Scholar 

  • Bastankhah M, Porté-Agel F (2014) A new analytical model for wind-turbine wakes. Renew Energy 70:116–123

    Article  MATH  Google Scholar 

  • Berg J, Patton EG, Sullivan PP. Large-eddy simulation of conditionally neutral boundary layers: a mesh resolution sensitivity study. Submitted for publication in J Atmos Sci

    Google Scholar 

  • Bingöl F, Mann J, Larsen GC (2010) Lidar measurements of wake dynamics, part 1: one dimensional scanning. Wind Energy 13:51-61

    Article  Google Scholar 

  • Braunbehrens R, Segalini A (2019) A statistical model for wake meandering behind wind turbines. J Wind Eng Ind Aerodyn 193:103954

    Article  Google Scholar 

  • Chougule A, Mann J, Kelly MC, Larsen GC (2017) Modeling atmospheric turbulence via rapid-distortion theory: spectral tensor of velocity and buoyancy. J Atmos Sci 74(4):949–974

    Article  Google Scholar 

  • Chougule A, Mann J, Kelly MC, Larsen GC (2018) Simplification and validation of a spectral-tensor model for turbulence including atmospheric stability. Bound-Layer Meteor 167:371–397

    Article  Google Scholar 

  • España G, Aubrun S, Loyer S, Devinant P (2011) Spatial study of the wake meandering using modeled wind turbines in a wind tunnel. Wind Energy 14:923–937

    Article  Google Scholar 

  • España G, Aubrun S, Loyer S, Devinant P (2012) Wind tunnel study of the wake meandering downstream of a modeled wind turbine as an effect of large scale turbulent eddies. J Wind Eng Ind Aerodyn 101:24–33

    Article  Google Scholar 

  • Galinos C, Dimitrov NK, Larsen TJ, Natarajan A, Hansen KS (2016) Mapping wind farm loads and power production – a case study on horns rev 1. J Phys Conf Ser 753:032010

    Article  Google Scholar 

  • Hansen KS, Larsen GC (2011) Determination of near wake characteristics behind a wind turbine. Book of abstracts, Wake Conference, Högskolan på Gotland, pp 102–103

    Google Scholar 

  • Hansen MH, Henriksen LC, Tibaldi C, Bergami L, Verelst D, Pirrung G (2017) HAWCStab2 User Manual. DTU Wind Energy

    Google Scholar 

  • Herges TG, Berg JC, Bryant JT, White JR, Paquette JA, Naughton BT (2018) Detailed analysis of a waked turbine using high-resolution scanning lidar. J Phys Conf Ser 1037:072009. The science of making torque from wind

    Google Scholar 

  • IEC 61400-1 Ed. 4.0 (2019) Wind energy generation systems – part 1: design requirements

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows – their structure and measurement. Oxford University Press

    Book  Google Scholar 

  • Katic I, Højstrup J, Jensen NO (1986) A simple model for cluster efficiency. EWEA conference and exhibition, Rome, 7–9 Oct 1986, paper C6

    Google Scholar 

  • Keck R-E, de Mare M, Churchfield MJ, Lee S, Larsen GC, Madsen HA (2015) Two improvements to the dynamic wake meandering model: including the effects of atmospheric shear on wake turbulence and incorporating turbulence buildup in a row of wind turbines. Wind Energy 18:111–132

    Google Scholar 

  • Larsen GC (2009) A simple stationary semi-analytical wake model. Risø-R-1713(EN)

    Google Scholar 

  • Larsen TJ, Hansen A (2007) How to HAWC2, the users manual. Risø-R-1597(EN)

    Google Scholar 

  • Larsen GC, Réthoré P-E (2013) TOPFARM a tool for wind farm optimization. Energy Proc 35:317–324

    Article  Google Scholar 

  • Larsen GC, Madsen HA, Bingöl F, Mann J, Ott S, Sørensen JN, Okulov V, Troldborg N, Nielsen M, Thomsen K, Larsen TJ, Mikkelsen R (2007) Dynamic wake meandering. Risø-R-1607(EN)

    Google Scholar 

  • Larsen GC, Madsen HA, Larsen TJ, Thomsen K (2008a) Wake meandering: a pragmatic approach. Wind Energy 11(4):377–395

    Article  Google Scholar 

  • Larsen GC, Madsen HA, Larsen TJ, Troldborg N (2008b) Wake modelling and simulation. Risø-R-1653(EN)

    Google Scholar 

  • Larsen GC, Larsen TJ, Mann J, Peña A, Hansen KS, Madsen HA (2009) The dependence of wake losses on atmospheric stability characteristics. In: EUROMECH colloquium 508 on wind turbine wakes 2009, pp 35–37

    Google Scholar 

  • Larsen GC, Hansen KS, Mann J, Enevoldsen K, Bingöl F (2010) Full scale measurements of wind turbine wake turbulence. In: Torque 2010: the science of making torque from wind. European Wind Energy Association, pp 391–405

    Google Scholar 

  • Larsen GC, Hansen KS, Troldborg N, Mann J, Enevoldsen K, Bingöl F (2012) An attempt to characterize the structure of wake turbulence using a combined experimental and numerical approach. iTi conference on turbulence, Progress in Turbulence and Wind Energy IV. Springer, pp 259–262

    Google Scholar 

  • Larsen TJ, Madsen HA, Larsen GC, Hansen KS (2013) Verification of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm. Wind Energy 16(4):605–624

    Article  Google Scholar 

  • Larsen TJ, Larsen GC, Madsen HA, Thomsen K, Pedersen SM (2015a) Wake effects above rated wind speed – an overlooked contributor to high loads in wind farms. In: EWEA annual conference and exhibition 2015, Paris

    Google Scholar 

  • Larsen GC, Machefaux E, Chougule A (2015b) Wake meandering under non-neutral atmospheric stability conditions – theory and facts. J Phys Conf Ser 625:012036

    Article  Google Scholar 

  • Larsen GC et al (2016) Impact of atmospheric stability conditions on wind farm loading and production. DTU Wind Energy E-0136(EN)

    Google Scholar 

  • Larsen GC, Ott S, Larsen TJ, Hansen KS, Chougule A (2018) Improved modelling of fatigue loads in wind farms under non-neutral ABL stability conditions. J Phys Conf Ser 1037:072013

    Article  Google Scholar 

  • Larsen GC, Pedersen AT, Hansen KS, Larsen TJ, Courtney M, Sjöholm M (2019) Full-scale 3D remote sensing of wake turbulence – a taster. J Phys Conf Ser 1256:012001

    Article  Google Scholar 

  • Lio WH, Larsen GC, Thorsen GR (2021) Dynamic wake tracking using a cost-effective LiDAR and Kalman filtering: design, simulation and full-scale validation. Renew Energy 172:1073–1086

    Article  Google Scholar 

  • Lu H, Porte-Agel F (2011) Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys Fluids 23:065101

    Article  Google Scholar 

  • Machefaux E, Larsen GC, Troldborg N, Gaunaa M, Rettenmeier A (2015) Empirical modelling of single wake advection and expansion using full scale pulsed lidar based measurements. Wind Energy 18(12):2085–2103

    Article  Google Scholar 

  • Machefaux E, Larsen GC, Tilman K, Troldborg N, Kelly MC, Chougule A, Hansen KS, Rodrigo JS (2016) An experimental and numerical study of the atmospheric stability impact on wind turbine wakes. Wind Energy 19:1785–1805

    Article  Google Scholar 

  • Madsen HA, Larsen GC, Thomsen K (2005) Wake flow characteristics in low ambient turbulence conditions. In: Copenhagen offshore wind, proceedings (Cd-Rom)

    Google Scholar 

  • Madsen HA, Larsen GC, Larsen TJ, Troldborg N (2010) Calibration and validation of the dynamic wake meandering model for implementation in an aeroelastic code. J Sol Energy Eng 132(4):041014

    Article  Google Scholar 

  • Mahulja S, Larsen GC, Elham A (2018) Engineering an optimal wind farm using surrogate models. Wind Energy 21(12):1296–1308

    Article  Google Scholar 

  • Mann J (1994) The spatial structure of neutral atmospheric surface-layer turbulence. J Fluid Mech 273:141–168

    Article  MATH  Google Scholar 

  • Medici D, Alfredsson P (2006) Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy 9(3):219–236

    Article  Google Scholar 

  • Meneveau C (2019) Big wind power: seven questions for turbulence research. J Turbul 20:1–19

    Article  MathSciNet  Google Scholar 

  • Miner MA (1945) Cumulative damage in fatigue. J Appl Mech 12:159–164

    Article  Google Scholar 

  • Muller Y-A, Aubrun S, Masson C (2015) Determination of real-time predictors of the wind turbine wake meandering. Exp Fluids 56:53

    Article  Google Scholar 

  • Porté-Agel F, Bastankhah M, Shamsoddin S (2020) Wind-turbine and wind-farm flows: a review. Bound-Layer Meteor 174:1–59

    Article  Google Scholar 

  • Réthoré P-E, Fuglsang P, Larsen GC, Buhl T, Larsen TJ, Madsen HA (2014) TOPFARM: multi-fidelity optimization of wind farms. Wind Energy 17(12):1797–1816

    Article  Google Scholar 

  • Segalini A, Arnqvist J (2015) A spectral model for stably stratified turbulence. J Fluid Mech 781:330–352

    Article  MathSciNet  MATH  Google Scholar 

  • Shaler K, Jonkman J, Doubrawa P, Hamilton N (2019) FAST. Farm response to varying wind inflow techniques. In: AIAA science and technology forum and exhibition (SciTech 2019), San Diego, 7–11 Jan 2019 [online proceedings], 5

    Google Scholar 

  • Shen W, Sørensen JN (2002) Numerical modeling of wind turbine wakes. J Fluids Eng 124:393–399

    Article  Google Scholar 

  • Sullivan PP, Patton EG (2011) The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J Atmos Sci 68:2395–2415

    Article  Google Scholar 

  • Sullivan PP, Weil JC, Patton EG, Jonker HJJ, Mironov DV (2016) Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer. J Atmos Sci 73(4):1815–1840

    Article  Google Scholar 

  • Taylor GI (1921) Diffusion by continuous movements. Proc Lond Math Soc 20:196–212

    MathSciNet  MATH  Google Scholar 

  • Taylor GJ, Milborrow DJ, McIntosh DN, Swift-Hokk DT (1985) Wake measurements on the Nibe windmills. In: Proceedings of the 7th British wind energy association conference, Oxford, 27–29 Mar, pp 67–74

    Google Scholar 

  • Troldborg N, Sørensen JN, Mikkelsen R, Sørensen NN (2014) A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes. Wind Energy 17(4):657–669

    Article  Google Scholar 

  • Troldborg N, Zahle F, Réthoré P-E, Sørensen NN (2015) Comparison of wind turbine wake properties in non-sheared inflow predicted by different computational fluid dynamics rotor models. Wind Energy 18(7):1239–1250

    Article  Google Scholar 

  • Trujillo JJ, Bingöl F, Larsen GC, Mann J (2011) Light detection and ranging measurements on wake dynamics; Part II: two-dimensional scanning. Wind Energy 14:61–75

    Article  Google Scholar 

  • Vermeer LJ, Sørensen JN, Crespo A (2003) Wind turbine wake aerodynamics. Prog Aerospace Sci 39:467–510

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunner Chr. Larsen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Larsen, G.C. (2021). Wake Meandering. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_50-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_50-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics