Skip to main content

Aerodynamics of Wake Steering

  • Living reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics

Abstract

This chapter discusses the mechanisms that enable wake steering within a wind farm with a focus on wake steering performed using yaw misaligned turbines as this is the most popular approach to wake steering, although there are others. Wake steering is a type of wind farm control in which wind turbines in a wind farm operate with an intentional yaw misalignment to mitigate the effects of its wake on downstream turbines in order to increase overall combined wind farm energy production. This chapter goes into detail regarding the dominant aerodynamic characteristics that are present when a turbine operates in yaw misaligned conditions and suggests analytical models that can capture these effects. A detailed analysis of large-scale flow structures generated in wind farm control through yaw misalignment is presented. A collection of counter-rotating vortices, produced from a misaligned turbine, deforms the shape of the wake and produces asymmetric effects with oppositely signed yaw angles. These vortices generated by an upstream misaligned turbine can also deflect wakes of downstream non-misaligned turbines. This chapter also addresses the importance of modeling these counter-rotating vortices in analytical models for wind farm control design and for accurately quantifying the impacts of wake steering on gains in power production in larger wind farms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abkar M, Porté-Agel F (2015) Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study. Phys Fluids 27(3):035104

    Article  Google Scholar 

  • Annoni J, Fleming P, Scholbrock A, Roadman J, Dana S, Adcock C, Porte-Agel F, Raach S, Haizmann F, Schlipf D (2018) Analysis of control-oriented wake modeling tools using lidar field results. Wind Energy Sci 3(2):819–831

    Article  Google Scholar 

  • Bastankhah M, Porté-Agel F (2014) A new analytical model for wind-turbine wakes. Renew Energy 70:116–123

    Article  Google Scholar 

  • Bastankhah M, Porté-Agel F (2016) Experimental and theoretical study of wind turbine wakes in yawed conditions. J Fluid Mech 806:506–541

    Article  Google Scholar 

  • Bastankhah M, Porté-Agel F (2019) Wind farm power optimization via yaw angle control: a wind tunnel study. J Renew Sustain Energy 11(2):023301

    Article  Google Scholar 

  • Bay CJ, Annoni J, Martínez-Tossas LA, Pao LY, Johnson KE Flow control leveraging downwind rotors for improved wind power plant operation. In: 2019 American control conference (ACC), pp 2843–2848. IEEE (2019)

    Google Scholar 

  • Boersma S, Doekemeijer B, Gebraad P, Fleming P, Annoni J, Scholbrock A, Frederik J, van Wingerden JW (2017) A tutorial on control-oriented modeling and control of wind farms. In: Proceedings of the American control conference (ACC), Seattle

    Google Scholar 

  • Churchfield MJ, Lee S, Moriarty PJ, Martinez LA, Leonardi S, Vijayakumar G, Brasseur JG (2012) A large-eddy simulation of wind-plant aerodynamics. AIAA paper 537:2012

    Google Scholar 

  • Damiani R, Dana S, Annoni J, Fleming P, Roadman J, van Dam J, Dykes K (2018) Assessment of wind turbine component loads under yaw-offset conditions. Wind Energy Sci 3(1):173–189

    Article  Google Scholar 

  • Dilip D, Porté-Agel F (2017) Wind turbine wake mitigation through blade pitch offset. Energies 10(6):757

    Article  Google Scholar 

  • Doekemeijer BM, Kern S, Maturu S, Kanev S, Salbert B, Schreiber J, Campagnolo F, Bottasso CL, Schuler S, Wilts F et al (2021) Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy. Wind Energy Sci 6(1):159–176

    Article  Google Scholar 

  • Duc T, Coupiac O, Girard N, Giebel G, Göçmen T (2019) Local turbulence parameterization improves the jensen wake model and its implementation for power optimization of an operating wind farm. Wind Energy Sci 4(2):287–302

    Article  Google Scholar 

  • Fleming PA, Gebraad PMO, Lee S, van Wingerden JW, Johnson K, Churchfield M, Michalakes J, Spalart P, Moriarty P (2014) Evaluating techniques for redirecting turbine wakes using sowfa. Renew Energy 70:211–218

    Article  Google Scholar 

  • Fleming PA, Ning A, Gebraad PMO, Dykes K (2016) Wind plant system engineering through optimization of layout and yaw control. Wind Energy 19(2):329–344

    Article  Google Scholar 

  • Fleming P, Annoni J, Shah JJ, Wang L, Ananthan S, Zhang Z, Hutchings K, Wang P, Chen W, Chen L (2017) Field test of wake steering at an offshore wind farm. Wind Energy Sci 2(1):229

    Article  Google Scholar 

  • Fleming P, Annoni J, Churchfield M, Martinez-Tossas LA, Gruchalla K, Lawson M, Patrick Moriarty (2018) A simulation study demonstrating the importance of large-scale trailing vortices in wake steering. Wind Energy Sci

    Book  Google Scholar 

  • Fleming P, Annoni J, Martínez-Tossas LA, Raach S, Gruchalla K, Scholbrock A, Churchfield M, Roadman J (2018) Investigation into the shape of a wake of a yawed full-scale turbine. J Phys Conf Ser 1037(3):032010

    Article  Google Scholar 

  • Fleming P, King JR, Dykes KL, Simley EJ, Roadman JM, Scholbrock AK, Murphy P, Lundquist JK, Moriarty PJ, Fleming KA et al (2019) Initial results from a field campaign of wake steering applied at a commercial wind farm: Part 1. Technical report, National Renewable Energy Lab.(NREL), Golden, CO

    Google Scholar 

  • Fleming P, King J, Simley E, Roadman J, Scholbrock A, Murphy P, Lundquist JK, Moriarty P, Fleming K, van Dam J et al (2020) Continued results from a field campaign of wake steering applied at a commercial wind farm–part 2. Wind Energy Sci 5(3):945–958

    Article  Google Scholar 

  • Gaumond M, Réthoré P-E, Ott S, Pena A, Bechmann A, Hansen KS (2014) Evaluation of the wind direction uncertainty and its impact on wake modeling at the horns rev offshore wind farm. Wind Energy 17(8):1169–1178

    Article  Google Scholar 

  • Gebraad PMO, Teeuwisse FW, Wingerden JW, Fleming PA, Ruben SD, Marden JR, Pao LY (2016) Wind plant power optimization through yaw control using a parametric model for wake effects a cfd simulation study. Wind Energy 19(1):95–114

    Article  Google Scholar 

  • Howland MF, Bossuyt J, Martínez-Tossas LA, Meyers J, Meneveau C (2016) Wake structure in actuator disk models of wind turbines in yaw under uniform inflow conditions. J Renew Sustain Energy 8(4):043301

    Article  Google Scholar 

  • Howland MF, Lele SK, Dabiri JO (2019) Wind farm power optimization through wake steering. Proceedings of the National Academy of Sciences 116(29):14495–14500

    Article  Google Scholar 

  • Jensen NO (1983) A note on wind generator interaction. Technical Report Risø-M-2411, Risø

    Google Scholar 

  • Jiménez Á, Crespo A, Migoya E (2010) Application of a les technique to characterize the wake deflection of a wind turbine in yaw. Wind Energy 13(6):559–572

    Article  Google Scholar 

  • Johnson KE, Pao LY, Balas MJ, Fingersh LJ (2006) Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture. IEEE Control Syst 26(3):70–81

    Article  Google Scholar 

  • Jonkman JM, Butterfield S, Musial W, Scott G (2009) Definition of a 5-mw reference wind turbine for offshore system development

    Google Scholar 

  • Martínez-Tossas LA, Churchfield MJ, Leonardi S (2015) Large eddy simulations of the flow past wind turbines: actuator line and disk modeling. Wind Energy 18(6):1047–1060

    Article  Google Scholar 

  • Martínez-Tossas LA, Annoni J, Fleming PA, Churchfield MJ (2019) The aerodynamics of the curled wake: a simplified model in view of flow control. Wind Energy Sci (Online) 4(NREL/JA-5000-73451)

    Google Scholar 

  • Niayifar A, Porté-Agel F (2015) A new analytical model for wind farm power prediction. J Phys Conf Ser 625:012039. IOP Publishing

    Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press

    Book  Google Scholar 

  • Pope SB (2001) Turbulent flows

    Google Scholar 

  • Shapiro CR, Gayme DF, Meneveau C (2018) Modelling yawed wind turbine wakes: a lifting line approach. J Fluid Mech 841

    Google Scholar 

  • Stull RB (2012) An introduction to boundary layer meteorology, volume 13. Springer Science and Business Media

    Google Scholar 

  • Thomas JJ, Annoni J, Fleming PA, Ning A (2019) Comparison of wind farm layout optimization results using a simple wake model and gradient-based optimization to large eddy simulations. In: AIAA Scitech 2019 Forum, p 0538

    Google Scholar 

  • Vollmer L, Steinfeld G, Heinemann D, Kühn M (2016) Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an les study. Wind Energy Sci 1(2):129–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer King .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

King, J., Fleming, P., Martinez, L., Bay, C., Churchfield, M. (2021). Aerodynamics of Wake Steering. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_60-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_60-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics