Skip to main content

Bionanoceramic and Bionanocomposite: Concepts, Processing, and Applications

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

The nanotechnology is responsible for initiating an essential role in various areas such as drinking water, wastewater, medical science, environment, etc. It has also put forward the innovative ideas for the environment, enabling it to link with other field and enhance its ability. The nanostructured ceramic is recognized as the best option for the application. Bioceramic, a valuable biocompatible ceramic, involves macro material as well as nanomaterial for its use. The bionanomaterials are applied in the different biological and biomedical field such as a biosensor, bioelectronics, and so on. The present book chapter is mainly related with new challenges, opportunities, the current status of its art, and the application as bionanocomposite and bionanoceramic and also highlights the advancement as applied in chemical synthesis along with the biosynthesis protocol. Owing to the vast extent of benefits in terms of renewability, less cost, and biodegradable and recycle features, the interest for bionanoceramic and bionanocomposite has grown in industrial application and functional employment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arfin T (2018a) MWCNT polymer composites: environmental applications. In: Ahmed S, Kanchi S (eds) Handbook of bionanocomposite: green and sustainable materials. Pan Stanford Publishing, Singapore, pp 235–245

    Google Scholar 

  • Arfin T (2018b) Current innovative chitosan-based water treatment of heavy metals: a sustainable approach. In: Ahmed S, Kanchi S, Kumar G (eds) Handbook of biopolymers: advances and multifaceted applications. Pan Stanford Publishing, Singapore, pp 167–182

    Google Scholar 

  • Arfin T, Athar S (2018) Graphene for advanced organic photovoltaics. In: Kanchi S, Ahmed S, Sabela MI, Hussain CM (eds) Nanomaterials: biomedical, environmental, and engineering applications. Scrivener Publishing LLC, Massachusetts, pp 93–104

    Chapter  Google Scholar 

  • Arfin T, Fatima S (2014a) Conductometric studies with polystyrene calcium phosphate membrane. Asian J Adv Basic Sci 2(1):1–14

    Google Scholar 

  • Arfin T, Fatima S (2014b) Anticipating behaviour of advanced materials in healthcare. In: Tiwari A, Nordin AN (eds) Advanced biomaterials and biodevices. Scrivener Publishing LLC, MA, pp 243–287

    Google Scholar 

  • Arfin T, Fatma S (2014) Synthesis, influence of electrolyte solutions on impedance properties and in-vitro antibacterial studies of organic-inorganic composite membrane. Adv Ind Eng Manag 3(2):19–30. https://doi.org/10.7508/AIEM-V3-N2-19-30

    Article  Google Scholar 

  • Arfin T, Kumar C (2014) Synthesis, characterization, conductivity and antibacterial activity of ethyl cellulose manganese (II) hydrogen phosphate. Anal Bioanal Chem 6(4):403–421

    CAS  Google Scholar 

  • Arfin T, Mogarkar PR (2018) Bio-based material protein and its novel applications. In: Ahmed S, Ikram S, Kanchi S, Bisetty K (eds) Biocomposites: biomedical and environmental applications. Pan Stanford Publishing, Singapore, pp 405–432

    Chapter  Google Scholar 

  • Arfin T, Mohammad F (2013a) DC electrical conductivity of nano-composite polystyrene-titanium-arsenate membrane. J Ind Eng Chem 19(6):2046–2051. https://doi.org/10.1016/j.jiec.2013.03.019

    Article  CAS  Google Scholar 

  • Arfin T, Mohammad F (2013b) Synthesis, characterization and influence of electrolyte solutions towards the electrical properties of nylon-6,6 nickel carbonate membrane: test for the theory of uni-ionic potential based on thermodynamics of irreversible processes. In: Lefebure J (ed) Halides: chemistry, physical properties and structural effects. Nova Science Publishers, New York, pp 39–66

    Google Scholar 

  • Arfin T, Mohammad F (2014) Electrochemical, dielectric behaviour and in vitro antimicrobial activity of polystyrene-calcium phosphate. Adv Ind Eng Manag 3(3):25–38. https://doi.org/10.7508/AIEM-V3-N3-25

    Article  Google Scholar 

  • Arfin T, Mohammad F (2015a) Dendrimer and its role for the advancement of nanotechnology and bioengineering. In: Wythers MC (ed) Advances in materials science research, vol 21. Nova Science Publishers, New York, pp 157–174

    Google Scholar 

  • Arfin T, Mohammad F (2015b) Electrical conductivity, mechanical stability, antibacterial and anticancer activities of ethyl cellulose-tin (II) hydrogen phosphate. Adv Mater Lett 6(12):1058–1065. https://doi.org/10.5185/amlett.2015.5896

    Article  CAS  Google Scholar 

  • Arfin T, Mohammad F (2016a) Chemistry and structural aspects of chitosan towards biomedical applications. In: Ikram S, Ahmed S (eds) Natural polymers: derivatives, blends and composites, vol 1. Nova Science Publishers, New York, pp 265–280

    Google Scholar 

  • Arfin T, Mohammad F (2016b) Electrochemical, antimicrobial and anticancer effects of ethyl cellulose-nickel (II) hydrogen phosphate. Innov Corros Mater Sci 6(1):10–18. https://doi.org/10.2174/2352094906999160307182012

    Article  Google Scholar 

  • Arfin T, Rafiuddin (2009a) Transport studies of nickel arsenate membrane. J Electroanal Chem 636(1–2):113–122. https://doi.org/10.1016/j.jelechem.2009.09.019

    Article  CAS  Google Scholar 

  • Arfin T, Rafiuddin (2009b) Electrochemical properties of titanium arsenate membrane. Electrochim Acta 54(27):6928–6934. https://doi.org/10.1016/j.electacta.2009.06.074

    Article  CAS  Google Scholar 

  • Arfin T, Rafiuddin (2010) Thermodynamics of ion conductivity of alkali halide across a polystyrene-based titanium arsenate membrane. Electrochim Acta 55(28):8628–8631. https://doi.org/10.1016/j.electacta.2010.07.091

    Article  CAS  Google Scholar 

  • Arfin T, Rafiuddin (2011) An electrochemical and theoretical comparison of ionic transport through a polystyrene-based cobalt arsenate membrane. Electrochim Acta 56(22):7476–7483. https://doi.org/10.1016/j.electacta.2011.06.109

    Article  CAS  Google Scholar 

  • Arfin T, Rafiuddin (2012) Metal ion transport through a polystyrene-based cobalt arsenate membrane: application of irreversible thermodynamics and theory of absolute reaction rates. Desalination 284:100–105. https://doi.org/10.1016/j.desal.2011.08.042

    Article  CAS  Google Scholar 

  • Arfin T, Tarannum A (2018) Engineered nanomaterials for industrial application: an overview. In: Hussain CM (ed) Handbook of nanomaterials for industrial applications. Elsevier, Amsterdam, pp 127–134

    Chapter  Google Scholar 

  • Arfin T, Yadav N (2012) Impedance characteristics and electrical double layer capacitance of polystyrene based nickel arsenate membrane. Anal Bioanal Electrochem 4(2):135–152

    Google Scholar 

  • Arfin T, Yadav N (2013) Impedance characteristics and electrical double-layer capacitance of composite polystyrene-cobalt-arsenate membrane. J Ind Eng Chem 19(1):256–262. https://doi.org/10.1016/j.jiec.2012.08.009

    Article  CAS  Google Scholar 

  • Arfin T, Jabeen F, Kriek RJ (2011) An electrochemical and theoretical comparison of ionic transport through a polystyrene based titanium-vanadium (1:2) phosphate membrane. Desalination 274(1–3):206–211. https://doi.org/10.1016/j.desal.2011.02.014

    Article  CAS  Google Scholar 

  • Arfin T, Falch A, Kriek RJ (2012) Evaluation of charge density and the theory for calculating membrane potential for a nano-composite nylon-6,6 nickel phosphate membrane. Phys Chem Chem Phys 14(48):16760–16769. https://doi.org/10.1039/C2CP42683H

    Article  CAS  Google Scholar 

  • Arfin T, Bushra R, Kriek RJ (2013) Ionic conductivity of alkali halides across a polyaniline-zirconium (IV)-arsenate membrane. Anal Bioanal Electrochem 5(2):206–221

    Google Scholar 

  • Arfin T, Mohammad F, Yusof NA (2015) Applications of polystyrene and its role as a base in industrial chemistry. In: Lynwood C (ed) Polystyrene: synthesis, characteristics and applications. Nova Science Publishers, New York, pp 269–280

    Google Scholar 

  • Arfin T, Bushra R, Mohammad F (2016) Electrochemical sensor for the sensitive detection of o-nitrophenol using graphene oxide-poly(ethyleneimine) dendrimer-modified glassy carbon electrode. Graphene Technol 1(1):1–15. https://doi.org/10.1007/s41127-016-0002-1

    Article  Google Scholar 

  • Arfin T, Athar S, Rangari S (2018a) Proteins and their novel applications. In: Ahmed S, Kanchi S, Kumar G (eds) Handbook of biopolymers: advances and multifaceted applications. Pan Stanford Publishing, Singapore, pp 75–93

    Google Scholar 

  • Arfin T, Tarannum A, Sonawane K (2018b) Green and sustainable advanced materials: an overview. In: Ahmed S, Hussain CM (eds) Green and sustainable advanced materials: processing and characterization, vol 1. Scrivener Publishing LLC, Massachusetts, pp 1–34

    Google Scholar 

  • Arfin T, Sonawane K, Saidankar P, Sharma S (2019) Role of microbes in the bioremediation of toxic dyes. In: Shahid-ul-Islam (ed) Integrated green chemistry and sustainable engineering. Scrivener Publishing LLC, MA, pp 443–472

    Chapter  Google Scholar 

  • Athar S, Arfin T (2017) Commercial and prospective applications of gelatin. In: Ahmed S, Ikram S (eds) Natural polymers: derivatives, blends and composite, vol 2. Nova Science Publishers, New York, pp 199–216

    Google Scholar 

  • Athar S, Bushra R, Arfin T (2017) Cellulose nanocrystals and PEO/PET hydrogel material in biotechnology and biomedicine: current status and future prospects. In: Jawaid M, Mohammad F (eds) Nanocellulose and nanohydrogel matrices: biotechnological and biomedical applications. Wiley-VCH, Weinheim, pp 139–173

    Chapter  Google Scholar 

  • Borkar R, Waghmare SS, Arfin T (2017) Bacterial cellulose and polyester hydrogel matrices in biotechnology and biomedicine: current status and future prospects. In: Jawaid M, Mohammad F (eds) Nanocellulose and nanohydrogel matrices: biotechnological and biomedical applications. Wiley-VCH, Weinheim, pp 21–46

    Chapter  Google Scholar 

  • Bushra R, Arfin T, Oves M, Raza W, Mohammad F, Khan MA, Ahmad A, Azam A, Muneer M (2016) Development of PANI/MWCNTs decorated with cobalt oxide nanoparticles towards multiple electrochemical, photocatalytic and biomedical application sites. New J Chem 40:9448–9459. https://doi.org/10.1039/C6NJ02054B

    Article  CAS  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901

    Article  CAS  Google Scholar 

  • Choi EY, Kim K, Kim CK, Kang E (2016) Reinforcement of nylon-6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion. Sci Rep 6:37010. https://doi.org/10.1038/srep37010

    Article  CAS  Google Scholar 

  • Fini M, Giavaresi G, Aldini NN, Torricelli P, Morrone G, Guzzardella GA, Giardino R, Krajewski A, Ravaglioli A, Belmonte MM, De Benedittis A, Biagini G (2000) The effect of osteopenia on the osteointegration of different biomaterials: histomorphometric study in rats. J Mater Sci Mater Med 11(9):579–585. https://doi.org/10.1023/A:1008932303913

    Article  CAS  Google Scholar 

  • Garcia-Ochoa F, Santos VE, Casas JA, Gomez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18(7):549–579. https://doi.org/10.1016/S0734-9750(00)00050-1

    Article  CAS  Google Scholar 

  • Golebiewski J, Rozanski A, Dzwonkowski J, Galeski A (2008) Low density polyethylene-montmorillonite nanocomposites for film blowing. Eur Polym J 44(2):270–286. https://doi.org/10.1016/j.eurpolymj.2007.11.002

    Article  CAS  Google Scholar 

  • Hussain CM, Mishra AK (2018) New polymer nanocomposites for environmental remediation. Elsevier, Amsterdam

    Google Scholar 

  • Islam MM, Khan MA, Rahman MM (2015) Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties. Mater Sci Eng C 49:648–655. https://doi.org/10.1016/j.msec.2015.01.066

    Article  CAS  Google Scholar 

  • Khan AU, Malik N, Arfin T (2017) Nanofibrillated cellulose and copoly (amino acid) hydrogel matrices in biotechnology and biomedicine. In: Jawaid M, Mohammad F (eds) Nanocellulose and nanohydrogel matrices: biotechnological and biomedical applications. Wiley-VCH, Weinheim, pp 331–352

    Chapter  Google Scholar 

  • Knowles TP, Mezzenga R (2016) Amyloid fibrils as building blocks for natural and artificial functional materials. Adv Mater 28(31):6546–6561. https://doi.org/10.1002/adma.201505961

    Article  CAS  Google Scholar 

  • Knowles TPJ, Oppenheim TW, Buell AK, Chirgadze DY, Welland ME (2010) Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat Nanotechnol 5(3):204–207. https://doi.org/10.1038/Nnano.2010.26

    Article  CAS  Google Scholar 

  • Konduk BA, Ucisik AH (2001) A study on the characterisation and biostability of used and virgin dialysis membranes and biocompatibility of the composite biomaterials. J Aust Ceram Soc 37(1):63–82

    CAS  Google Scholar 

  • Kumar K, Tripathi BP, Shahi VK (2009) Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater. J Hazard Mater 172(2–3):1041–1048. https://doi.org/10.1016/j.jhazmat.2009.07.108

    Article  CAS  Google Scholar 

  • Laabd M, Chafai H, Essekri A, Elamine M, Al-Muhtaseb SA, Lakhmiri R, Albourine A (2017) Single and multi-component adsorption of aromatic acids using an eco-friendly polyaniline-based biocomposite. Sustain Mater Technol 12:35–43. https://doi.org/10.1016/j.susmat.2017.04.004

    Article  CAS  Google Scholar 

  • Malik N, Khan AU, Naqvi S, Arfin T (2016) Ultrasonic studies of different saccharides in α- amino acids at various temperatures and concentrations. J Mol Liq 221:12–18. https://doi.org/10.1016/j.molliq.2016.05.061

    Article  CAS  Google Scholar 

  • Mogarkar PR, Arfin T (2017) Chemical and structural importance of starch based derivative and its applications. In: Ikram S, Ahmed A (eds) Natural polymers: derivatives, blends and composite, vol 2. Nova Science Publishers, New York, pp 73–87

    Google Scholar 

  • Mohammad F, Arfin T (2013) Cytotoxic effects of polystyrene-titanium-arsenate composite in cultured H9c2 cardiomyoblasts. Bull Environ Contam Toxicol 91(6):689–696. https://doi.org/10.1007/s00128-013-1131-3

    Article  CAS  Google Scholar 

  • Mohammad F, Arfin T, Yusof NA (2015) Chemical processes and reaction by-products involved in the biorefinery concept of biofuel production. In: Hakeem KR, Jawaid M, Alothman OY (eds) Agricultural biomass based potential materials. Springer International Publishing, Switzerland, pp 471–489

    Google Scholar 

  • Mohammad F, Arfin T, Al-Lohedan HA (2017a) Enhanced biological activity and biosorption performance of trimethyl chitosan-loaded cerium oxide particles. J Ind Eng Chem 45:33–43. https://doi.org/10.1016/j.jiec.2016.08.029

    Article  CAS  Google Scholar 

  • Mohammad F, Arfin T, Al-Lohedan HA (2017b) Sustained drug release and electrochemical performance of ethyl cellulose-magnesium hydrogen phosphate composite. Mater Sci Eng C 71:735–743. https://doi.org/10.1016/j.msec.2016.10.062

    Article  CAS  Google Scholar 

  • Mohammad F, Arfin T, Al-Lohedan HA (2018a) Synthesis, characterization and applications of ethyl cellulose-based polymeric calcium (II) hydrogen phosphate composite. J Electron Mater 47(5):2954–2963. https://doi.org/10.1007/s11664-018-6118-8

    Article  CAS  Google Scholar 

  • Mohammad F, Arfin T, Saba N, Jawaid M, Al-Lohedan HA (2018b) Electrical conductivity and biological efficacy of ethyl cellulose and polyaniline-based composites. In: Khan A, Jawaid M, Khan AAP, Asiri AM (eds) Electrically conductive polymers and polymer composites: from synthesis to biomedical applications. Wiley-VCH, Weinheim, pp 181–197

    Chapter  Google Scholar 

  • Mohammad F, Arfin T, Al-Lohedan HA (2019a) Biocompatible polyactic acid-reinforced nickel-arsenate composite: studies of electrochemical conductivity, mechanical stability, and cell viability. Mater Sci Eng C 102:142–149. https://doi.org/10.1016/j.msec.2019.04.046

    Article  CAS  Google Scholar 

  • Mohammad F, Arfin T, Al-Lohedan HA (2019b) Enhanced biosorption and electrochemical performance of sugarcane bagasse derived a polylactic acid-graphene oxide-CeO2 composite. Mater Chem Phys 229:117–123. https://doi.org/10.1016/j.matchemphys.2019.02.085

    Article  CAS  Google Scholar 

  • Mohammad F, Arfin T, Bwatanglang IB, Al-Lohedan HA (2019c) Starch-based nanocomposites: types and industrial applications. In: Sanyang ML, Jawaid M (eds) Bio-based polymers and nanocomposites: preparation, processing, properties & performance. Springer International Publishing, Switzerland, pp 157–181

    Chapter  Google Scholar 

  • Mukherjee S, Kundu B, Chanda A, Sen S (2015) Effect of functionalisation of CNT in the preparation of HAp-CNT biocomposites. Ceram Int 41(3):3766–3774. https://doi.org/10.1016/j.ceramint.2014.11.052

    Article  CAS  Google Scholar 

  • Noiri A, Hoshi F, Murakami H, Sato K, Kawai S, Kawai K (2002) Biocompatibility of a mobile alumina-ceramic orbital implant. Nippon Ganka Kiyo 53(6):476–480

    CAS  Google Scholar 

  • Onwudiwe DC, Arfin T, Strydom CA (2014) Synthesis, characterization, and dielectric properties of N-butyl aniline capped CdS nanoparticles. Electrochim Acta 116:217–223. https://doi.org/10.1016/j.electacta.2013.11.046

    Article  CAS  Google Scholar 

  • Park KS, Youn JR (2012) Dispersion and aspect ratio of carbon nanotubes in aqueous suspension and their relationship with electrical resistivity of carbon nanotube filled polymer composite. Carbon 50(6):2322–2330. https://doi.org/10.1016/j.carbon.2012.01.052

    Article  CAS  Google Scholar 

  • Rodrigues A, Emeje M (2012) Recent applications of starch derivatives in nanodrug delivery. Carbohydr Polym 87(12):987–994. https://doi.org/10.1016/j.carbpol.2011.09.044

    Article  CAS  Google Scholar 

  • Sanand S, Hussain A, Kaul G (2015) Biosafety of nanomaterials used in nanoceramics and nanocomposites. In: Makhlouf ASH, Scharnweber D (eds) Handbook of nanoceramic and nanocomposite coatings and materials. Elsevier Ltd, Amsterdam, pp 471–487

    Chapter  Google Scholar 

  • Singha AS, Rana RK (2012) Fabrication of polystyrene/agave particle biocomposites using compression molding technique: evaluation of flammability, biodegradability, mechanical and thermal behaviour. Bull Mater Sci 36(7):1207–1216. https://doi.org/10.1007/s12034-013-0595

    Article  Google Scholar 

  • Thian ES, Loh NH, Khor KA, Tor SB (2002) In vitro behaviour of sintered powder injection molded Ti-6Al-4V/HA. J Biomed Mater Res 63(2):79–87. https://doi.org/10.1002/jbm.10082

    Article  CAS  Google Scholar 

  • Waghmare SS, Arfin T (2015) Defluoridation by adsorption with chitin-chitosan-alginate-polymers-cellulose-resins-algae and fungi-a review. Int Res J Eng Technol 2(6):1179–1197

    Google Scholar 

  • Wilson J, Pigott GH, Schoen FJ, Hench LL (1981) Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 15(6):805–817. https://doi.org/10.1002/jbm.820150605

    Article  CAS  Google Scholar 

  • Zimmerman M, Parsons JR, Alexander H, Weiss AB (1984) The electrical stimulation of bone using a filamentous carbon cathode. J Biomed Mater Res 18(8):927–938. https://doi.org/10.1002/jbm.820180807

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanvir Arfin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Arfin, T. (2019). Bionanoceramic and Bionanocomposite: Concepts, Processing, and Applications. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics