Skip to main content

Biocompatible Chitosan-Coated Gold Nanoparticles: Novel, Efficient, and Promising Nanosystems for Cancer Treatment

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

This chapter provides an overview of advances in the field of nanoparticles-mediated cancer treatment, where biocompatible chitosan-coated gold nanoparticles are proved to be the efficient and promising nanosystems, for treatment of various types of cancer. Nanoparticles have emerged as one of the most effective agents to develop novel techniques in diverse fields due to their small size and versatile surface chemistry that have proved to be advantageous for various biomedical applications, some of which include targeted drug and gene delivery, efficient diagnosis, and therapeutic applications for cancer treatment. In this chapter, special attention is devoted to the use of gold nanoparticles in cancer treatment, which are found to be an outstanding choice for attacking cancer cells, due to their low toxicity, efficient target specificity, diagnostic capabilities, and enhanced cellular uptake rate. The synthesis methods and properties of gold nanoparticles are discussed in brief. Special attention is paid to the benefits and risks of using gold nanoparticles. The discussion focuses on aspects related to the treatment of cancer where the influence of size and shape is important from the characteristics of the materials as well as from the biological point of view. The role of gold nanoparticles is also analyzed from the point of view of its influence on the delivery of different anticancer agents. Since gold nanoparticles tend to aggregate owing to their anisotropy, synthesizing a stable colloidal system containing gold nanoparticles is difficult. This challenge can be overcome by coating them with natural and bioabsorbable polymer, i.e., chitosan, which can stabilize them and increase their biocompatibility. Chitosan nanoparticles have become famous for their biodegradability, easy availability, cancer imaging, and less cytotoxicity. Moreover, owing to the release of desired molecules in a consistent and regulatory manner, various anticancer agents can be transported to tumor sites via these nanoparticles leading to their eradication and downregulation, due to which chitosan-stabilized gold nanoparticles provide a promising pathway for the treatment of cancer. This chapter highlights the current advances in the application as well as future perspectives of chitosan-coated gold nanoparticles for the treatment of several types of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abaza A, Hegazy EA, Mahmoud GA, Elsheikh B (2018) Characterization and antitumor activity of chitosan/poly (vinyl alcohol) blend doped with gold and silver nanoparticles in treatment of prostatic cancer model. J Pharm Pharmacol 6:659–673. https://doi.org/10.17265/2328-2150/2018.07.003

    Article  Google Scholar 

  • Alshamsan A, Hamdy S, Haddadi A, Samuel J, El-Kadi AO, Uludağ H, Lavasanifar A (2011) STAT3 knockdown in B16 melanoma by siRNAlipopolyplexes induces bystander immune response in vitro and in vivo. Transl Oncol 4:178–188

    Google Scholar 

  • Amidi M, Hennink WE (2010) Chitosan based formulations of drugs, imaging agents andbiotherapeutics. Adv Drug Deliv Rev 62:1–2. https://doi.org/10.1016/j.addr.2009.12.006

    Article  CAS  Google Scholar 

  • Baig B, Halim SA, Farrukh A, Greish Y, Amin A (2019) Current status of nanomaterial-based treatment for hepatocellular carcinoma. Biomed Pharmacother 116:108852

    CAS  Google Scholar 

  • Bhattarai SR, K.C RB, Aryal S, Bhattarai N, Kim SY, Yi HK, Hwang PH, Kim HY (2008) Hydrophobically modified chitosan/gold nanoparticles for DNA delivery. J Nanopart Res 10:151–162

    CAS  Google Scholar 

  • Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24(8):1415–1426

    CAS  Google Scholar 

  • Bittoni A, Santoni M, Lanese A, Pellei C, Andrikou K, Stefano C (2014) Neoadjuvant therapy in pancreatic cancer: an emerging strategy. Gastroenterol Res Pract 2014:183852. https://doi.org/10.1155/2014/183852

    Article  Google Scholar 

  • Boca SC, Potara M, Toderas F, Stephan O, Baldeck PL, Astilean S (2010) Uptake and biological effects of chitosan-capped gold nanoparticles on Chinese hamster ovary cells. Mater Sci Eng C

    Google Scholar 

  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994a) Synthesis of thiol-derivatised gold nanoparticles. J Chem Soc Chem Commun:801–802

    Google Scholar 

  • Brust M, Walker M, Bethell W, Schriffin DJ, Whyman R (1994b) Synthesis of thiol-derivatised gold nanoparticles in a two phase liquid system. J Chem Soc:801–802

    Google Scholar 

  • Capranico G, Soranzo C, Zunino F (1986) Single-strand DNA breaks induced by chromophore-modified anthracyclines in P388 leukemia cells. Cancer Res 46(11):5499–5503

    CAS  Google Scholar 

  • Chen YS, Hung YC, Liau I, Huang GS (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4(8):858–864

    CAS  Google Scholar 

  • Choi SY, Jang SH, Park J, Jeong S, Park JH, Ock KS, Lee K, Yang SI, Joo S-W, Ryu PD, Lee SY (2012) Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells. J Nanopart Res 14:1234

    Google Scholar 

  • Deb S, Patra HK, Lahiri P, Dasgupta AK, Chakrabarti K, Chaudhuri U (2011) Multistability in platelets and their response to gold nanoparticles. Nanomed: Nanotechnol Biol Med 7:376–384

    CAS  Google Scholar 

  • Dhamecha D, Jalalpure S, Jadhav K (2016) Nepenthes khasiana mediated synthesis of stabilized gold nanoparticles: characterization and biocompatibility studies. J Photochem Photobiol B Biol 154:108–117

    CAS  Google Scholar 

  • Duan R, Zhou Z, Su G, Liu L, Guan M, Du B, Zhang Q (2014) Chitosan-coated gold nanorods for cancer therapy combining chemical and photothermal effects. Macromol Biosci. https://doi.org/10.1002/mabi.201300563

  • Eissa S, Kassem S, Labib R, El-Khouly I, Ghaffer T, Sadek M et al (2005) Cancer 103:1356–1362

    CAS  Google Scholar 

  • Enustun BV, Turkevich J (1963) Coagulation of colloidal gold. J Am Chem Soc 85:3317–3328

    CAS  Google Scholar 

  • Eustis S, El-Sayed A (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    CAS  Google Scholar 

  • Faraday M (1857) The Bakerian lecture: experimental relations of gold to light. Philos Trans R Soc Lond 147:145–181

    Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of particle size in monodisperse gold suspensions. Nature Phys Sci 241:20–22

    CAS  Google Scholar 

  • Ganesh T (2007) Improved biochemical strategies for targeted delivery of taxoids. Bioorg Med Chem 15(11):3597–3623

    CAS  Google Scholar 

  • Ganeshkumar M, Sastry TP, Sathish Kumar M, Dinesh MG, Kannappan S, Suguna L (2012) Sun light mediated synthesis of gold nanoparticles as carrier for 6- mercaptopurine: preparation, characterization and toxicity studies in zebrafish embryo model. Mater Res Bull 47:2113–2119

    CAS  Google Scholar 

  • Giersig M, Mulvaney P (1993) Preparation of ordered monolayers by electrophoretic deposition. Langmuir 9:3408–3413

    CAS  Google Scholar 

  • Guo X, Zhuang Q, Ji T, Zhang Y, Li C, Wang Y, Li H, Jia H, Liu Y, Du L (2018) Chitosan nanoparticles for enhanced chemotherapy in lung cancer, Carbohydr Polym:30480–30486

    Google Scholar 

  • Jang SH, Choi SY, Ryu PD, Lee SY (2011) Eur J Pharmacol 651:26–32

    CAS  Google Scholar 

  • Jeong S, Choi SY, Park J, Seo J-H, Park J, Cho K, Joo S-W, So YL (2011) Low-toxicity chitosan gold nanoparticles for small hairpin RNA delivery in human lung adenocarcinoma cells. J Mater Chem 21:13853–13859|13853

    CAS  Google Scholar 

  • Jiang M, Ouyang H, Ruan P, Zhao H, Pi Z, Huang S et al (2011) Chitosan derivatives inhibit cell proliferation and induce apoptosis in breast cancer cells. Anticancer Res 31:1321–1328

    CAS  Google Scholar 

  • Jin R, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Cheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    CAS  Google Scholar 

  • Kay J, Westhovens R (2009) Methotrexate: the gold standard without standardisation. J Pain Palliat Care Pharmacother 68(7):1081–1082

    CAS  Google Scholar 

  • Kortylewski M, Jove R, Yu H (2005) Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev 24:315–327

    CAS  Google Scholar 

  • Labala S, Jose A, Venuganti VVK (2016) Transcutaneous iontophoretic delivery of STAT3 siRNA using layer-by-layer chitosan coated gold nanoparticles to treat melanoma. Colloids Surf B Biointerfaces 146:188–197. https://doi.org/10.1016/j.colsurfb.2016.05.076

    Article  CAS  Google Scholar 

  • Laurent TC, Fraser JRE (1992) FASEB J 6:2397–2404

    CAS  Google Scholar 

  • Lokeshwar VB, Obek C, Soloway MS, Block NL (1997) Cancer Res 57:773–777

    CAS  Google Scholar 

  • Martínez-Torres AC, Yarimet Lorenzo-Anota H, García-Juárez MG, Zarate-Triviño DG, Rodríguez-Padilla C (2019) Chitosan gold nanoparticles induce different ROS-dependent cell death modalities in leukemic cells. Int J Nanomedicine 14:7173–7190

    Google Scholar 

  • Montaudie H, Sbidian E, Paul C, Maza A, Gallini A, Aractingi S, Aubin F, Bachelez H, Cribier B, Joly P, Jullien D, Maitre ML, Misery L, Richard MA, Ortonne JP (2011) Methotrexate in psoriasis: a systematic review of treatment modalities, incidence, risk factors and monitoring of liver toxicity. J Eur Acad Dermatol Venereol 25.(Supp 2:1–33

    Google Scholar 

  • Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC et al (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41(12):1721–1730

    CAS  Google Scholar 

  • Nam KS, Shon YH (2009) Suppression of metastasis of human breast cancer cells by chitosan oligosaccharides. J Microbiol Biotechnol 19:629–633

    CAS  Google Scholar 

  • Nautiyal J, Kanwar SS, Yu Y, Majumdar AP (2011 Jul 20) Combination of dasatinib and curcumin eliminates chemo-resistant colon cancer cells. J Mol Signal 6:7. https://doi.org/10.1186/1750-2187-6-7

    Article  CAS  Google Scholar 

  • Nazirov A, Pestov A, Privar Y, Ustinov A, Modin E, Bratskaya S (2016) One-pot green synthesis of luminescent gold nanoparticles using imidazole derivative of chitosan. Carbohydr Polym 151:649–655

    CAS  Google Scholar 

  • Niidome Y, Nishioka K, Kawasaki H, Yamada S (2003) Rapid synthesis of gold nanorods by the combination of chemical reduction and photoradiation processes; morphological changes depending on the growing processes. Chem Commun:2376–2377

    Google Scholar 

  • Nossier AI, Eissa S, Ismail c MF, Hamdy c MA, Azzazy HME-S (2014) Direct detection of hyaluronidase in urine using cationic gold nanoparticles: a potential diagnostic test for bladder cancer. Biosens Bioelectron 54:7–14

    CAS  Google Scholar 

  • Okitsu K, Ashokkumar M, Grieser F (2005) Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J Phys Chem B 109:20673–20675

    CAS  Google Scholar 

  • Peetla C, Labhasetwar V (2008) Biophysical characterization of nanoparticle-endothelial model cell membrane interactions. Mol Pharm 5:418–429. https://doi.org/10.1021/mp700140a

    Article  CAS  Google Scholar 

  • Pestov AV, Ezhikova MA, Kodess MI, Azarova YA, Bratskaya SY (2014) Preparation of a sorbent for metal ions based on N-(5-methylimidazol-4-ylmethyl) chitosan with medium degree of substitution. Russ J Appl Chem 87(1):82–87. https://doi.org/10.1134/S1070427214010121

    Article  CAS  Google Scholar 

  • Pestov A, Nazirov A, Privar Y, Modin E, Bratskaya S (2016) Role of au(III) coordination by polymer in “green” synthesis of gold nanoparticles using chitosan derivatives. Int J Biol Macromol 91:457–464

    CAS  Google Scholar 

  • Rezende TS, Andrade GRS, Barreto LS, Costa NB Jr, Gimenez IF, Almeida LE (2010) Facile preparation of catalytically active gold nanoparticles on a thiolated chitosan. Mater Lett 64:882–884

    CAS  Google Scholar 

  • Rovais MRA, Alirezapoura B, Moassesia ME, Amiria M, Novina FB, Maadib E (2018) Internalization capabilities of gold-198 nanoparticles: comparative evaluation of effects of chitosan agent on cellular uptake into MCF-7. Appl Radiat Isot

    Google Scholar 

  • Schaal PA, Besmehn A, Maynicke E, Noyong M, Beschoten B, Simon U (2012) Electrically conducting nanopatterns formed by chemical e-beam lithography via gold nanoparticle seeds. Langmuir 28:2448–2454

    CAS  Google Scholar 

  • Shan J, Tenhu H (2007) Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem Commun:4580–4598

    Google Scholar 

  • Shao Y, Jin Y, Dong S (2004) Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem Commun:1104–1105

    Google Scholar 

  • Sivaraman SK, Kumar S, Santhanam V (2011) Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in turkevich method- the role of chloroauric acid. J Colloid Interface Sci 361(2):543–547

    CAS  Google Scholar 

  • Sun S, Mendes P, Critchley K, Diegoli S, Hanwell M, Evans SD, Leggett GJ, Preece JA, Richardson TH (2006) Fabrication of gold micro and nanostructures by photolithography exposure of thiol stabilized gold nanoparticles. Nano Lett 6:345–350

    CAS  Google Scholar 

  • Suresh L, Brahman PK, Reddy KR, J.S B (2017) Development of an electrochemical immunosensor based on gold nanoparticles incorporated chitosan biopolymer nanocomposite film for the detection of prostate cancer using PSA as biomarker. Enzym Microb Technol

    Google Scholar 

  • Sutton JM, Abbott DE (2014) Neoadjuvant therapy for pancreas cancer: past lessons and future therapies. World J Gastroenterol: WJG 20(42):15564–15579. https://doi.org/10.3748/wjg.v20.i42.15564

    Article  CAS  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Google Scholar 

  • Wang C-H, Chang C-W, Peng C-A (2011) Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment. J Nanopart Res 13:2749–2758

    CAS  Google Scholar 

  • Yoon SH (2014) Immunotherapy for non-small cell lung cancer. Tuberc Respir Dis 77(3):111–115

    Google Scholar 

  • Zeiderman MR, Morgan DE, Christein JD, Grizzle W, McMasters KM, McNally LR (2016) Acidic pH-targeted chitosan capped mesoporous silica coated gold nanorods facilitate detection of pancreatic tumors via multispectral optoacoustic tomography. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.6b00111

  • Zhang G, Sun X, Jasinski J, Patel D, Gobin AM (2012) Gold/chitosan nanocomposites with specific near infrared absorption for Photothermal therapy applications. J Nanomater 853416, 9 pages

    Google Scholar 

  • Zhi-Chuan X, Cheng-Min S, Cong-Wen X, Tian-Zhong Y, Huai-Ruo Z, Jian-Qi L, Hong-Jun G (2007) Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles. Nanotechnol 18:115608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gulati, S., Kumar, S., Singh, P., Diwan, A., Mongia, A. (2020). Biocompatible Chitosan-Coated Gold Nanoparticles: Novel, Efficient, and Promising Nanosystems for Cancer Treatment. In: Hussain, C.M., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics