Skip to main content

Alkaline Earth Stannate Nanomaterials as an Electron Transport Layer in Dye-Sensitized Solar Cells

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

Dye-sensitized solar cells belong to the third generation of solar cells. They have been getting much attention recently among the scientific community due to the facile manufacturing process and competitive power conversion efficiency. Conventionally, the mesoporous TiO2 has been extensively used as an electron transport layer due to its substantial photoelectron generation. One of the main differences between conventional silicon cell and dye-sensitized solar cell is that in DSSC the photon absorption and charge transfer process is separated by each other. Recently, the research community focused itsĀ attention on searching for ternary wide-bandgap semiconductors as an electron transporter in dye-sensitized solar cells for better stability and electron mobility as compared to conventionally used TiO2. Among ternary oxides, strontium and barium stannate belonging to alkaline earth stannate family were used more often as an electron transport layer in dye-sensitized solar cells. The alkaline earth stannate nanoparticles have been synthesized through various techniques such as sol-gel wet-chemical route and hydrothermal and solid-state ceramic combustion method. In the current chapter, we report the recent advancements and the practical usage of alkaline earth stannate nanomaterials as electron transport layer in dye-sensitized solar cells and compare the various parameters involved in the performance of the dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abrari M, Ahmadi M, Ghanaatshoar M, Moazami HR, Davarani SSH (2019) Fabrication of dye-sensitized solar cells based on SnO2/ZnO composite nanostructures: a new facile method using dual anodic dissolution. J Alloys Compd 784:1036ā€“1046

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ahmad MS, Pandey AK, Abd Rahim N (2017) Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications: a review. Renew Sust Energ Rev 77:89ā€“108

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Aksoy S, Gorgun K, Caglar Y, Caglar M (2019) Effect of loading and standby time of the organic dye N719 on the photovoltaic performance of ZnO based DSSC. J Mol Struct 1189:181ā€“186

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Aksoy S, Polat O, Gorgun K, Caglar Y, Caglar M (2020) Li doped ZnO based DSSC: characterization and preparation of nano powders and electrical performance of its DSSC. Phys E Low Dimens Syst Nanostruct 121:114127

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Alaan US, Nā€™Diaye AT, Shafer P, Arenholz E, Suzuki Y (2017) Structure and magnetism of Fe-doped BaSnO3 thin films. AIP Adv 7:055716

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Avinash M, Muralidharan M, Sivaji K (2019) Structural, optical and magnetic behaviour of Cr doped BaSnO3 perovskite nanostructures. Phys B Condens Matter 570:157ā€“165

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Babar F, Mehmood U, Asghar H, Mehdi MH, Khan AUH, Khalid H, ul Huda N, Fatima Z (2020) Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: a comprehensive review. Renew Sust Energ Rev 129:109919

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bala A, Majumder SB, Dewan M, Chaudhuri AR (2019) Hydrogen sensing characteristics of perovskite-based calcium doped BiFeO3 thin films. Int J Hydrog Energy 44:18648ā€“18656

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Boschloo G (2019) Improving the performance of dye-sensitized solar cells. Front Chem 7:77

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bouhemadou A, Haddadi K (2010) Structural, elastic, electronic and thermal properties of the cubic perovskite-type BaSnO3. Solid State Sci 12:630ā€“636

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Brendan KJ, Qasim I, Knight KS (2015) Low temperature structural studies of SrSnO3. J Phys Condens Matter 27:365401

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chebrolu VT, Kim HJ (2012) Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode. J Mater Chem C 7:4911ā€“4933

    ArticleĀ  Google ScholarĀ 

  • Cho HJ, Onozato T, Wei M, Sanchela A, Ohta H (2019) Effects of vacuum annealing on the electron mobility of epitaxial La-doped BaSnO3 films. APL Mater 7:022507

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chou JC, Lu CC, Liao YH, Lai CH, Nien YH, Kuo CH, Ko CC (2019) Fabrication and electrochemical impedance analysis of dye-sensitized solar cells with titanium dioxide compact layer and graphene oxide dye absorption layer. IEEE Trans Nanotechnol 18:461ā€“466

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cuervo FJ, Arbey Rodriguez J, Fajardo F, Vera Lopez E, Landinez Tellez DA, Roa-Rojas J (2009) Structural properties, electric response and electronic feature of BaSnO3 perovskite. Phys B Condens Matter 404:2720ā€“2722

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dmitry GA, Alexey A, Medvedev MAG, Jenny G, Nagasubramanian A, Lev MSO, Prikhodchenko V (2018) Synthesis of high volumetric capacity graphene oxide-supported tellurantimony Na-and Li-ion battery anodes by hydrogen peroxide sol gel processing. J Colloid Interface Sci 512:165ā€“171

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dou J, Li X, Li Y, Chen Y, Wei M (2019) Fabrication of Zn2SnO4 microspheres with controllable shell numbers for highly efficient dye-sensitized solar cells. Sol Energy 181:424ā€“429

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Elizabeth MH, Attfield JP, Redfern SAT (2003) Cation-size control of structural phase transitions in tin perovskites. J Phys Condens Matter 15:8315

    ArticleĀ  Google ScholarĀ 

  • Fakharuddin A, Jose R, Brown TM, Fabregat-Santiago F, Bisquert J (2014) A perspective on the production of dye-sensitized solar modules. Energy Environ Sci 7:3952ā€“3981

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gong J, Sumathy K, Qiquan Q, Zhou Z (2017) Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew Sust Energ Rev 68:234ā€“246

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Goodwin AL, Simon ATR, Martin TD, David AK, Matthew GT (2007) Ferroelectric nanoscale domains and the 905 K phase transition in SrSnO3: a neutron total-scattering study. Phys Rev B 76:74114

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Govindaraj R, Santhosh N, Pandian MS, Ramasamy P (2017) Synthesis of nanocrystalline TiO2 nanorods via hydrothermal method: an efficient photoanode material for dye sensitized solar cells. J Cryst Growth 468:125ā€“128

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Guo ZL, Zhuang J, Ma Z, Xia HR, Wen QX, Luo XY, Wen X (2019) Enhanced electron extraction using ZnO/ZnO-SnO2 solid double-layer photoanode thin films for efficient dye sensitized solar cells. Thin Solid Films 684:1ā€“8

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Guo H, Zhang H, Yang J, Gong W, Chen H, Wang H, Liu X, Hao F, Niu X, Zhao Y (2020) Lanthanum-doped strontium stannate nanocrystals as efficient electron transport layers for planar perovskite solar cells. ACS Appl Energy Mater 7:6889ā€“6896

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Henriques JM, Caetano EWS, Freire VN, Da Costa JA, Albuquerque EL (2007) Structural, electronic, and optical absorption properties of orthorhombic CaSnO3 through ab initio calculations. J Phys Condens Matter 19:106214

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hussain MI, Khalil RA, Hussain F, Imran M, Rana AM, Kim S (2020) Investigations of structural, electronic and optical properties of YInO3 (Y= Rb, Cs, Fr) perovskite oxides using mBJ approximation for optoelectronic applications: a first principles study. Mater Sci Semicond Process 113:105064

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jiang S (2019) Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells ā€“ a review. Int J Hydrog Energy 44:7448ā€“7493

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jin S, Hao H, Guo W, Yu Y, Hou H, Zhang G, Yan S, Gao W, Liu G (2017) Preparation and characterization of Sm3+-doped SrSnO3 and its photoelectric performance as photo-anode of dye-sensitized solar cells. J Nanopart Res 19:279

    ArticleĀ  CASĀ  Google ScholarĀ 

  • John J, Pillai VPM, Thomas AR, Philip R, Joseph J, Muthunatesan S, Ragavendran V, Prabhu R (2017) Synthesis, structural and morphological property of BaSnO3 nanopowder prepared by solid state ceramic method. IOP Conf Ser Mater Sci Eng 195:012007

    ArticleĀ  Google ScholarĀ 

  • Kang SG, Sholl DS (2017) Characterizing chemical stability and proton conductivity of B-site doped barium hafnate (BaHfO3) and barium stannate (BaSnO3) with first principles modeling. J Alloys Compd 693:738ā€“743

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kavan L, Vlckova Zivcova Z, Zlamalova M, Zakeeruddin SM, GrƤtzel M (2020) Electron-selective layers for dye-sensitized solar cells based on TiO2 and SnO2. J Phys Chem C 124:6512ā€“6521

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim DW, Shin SS, Lee S, Cho IS, Kim DH, Lee CW, Jung HS, Hong KS (2013) BaSnO3 perovskite nanoparticles for high efficiency dye-sensitized solar cells. ChemSusChem 6:449ā€“454

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim M, Lee B, Ju H, Kim JY, Kim J, Lee SW (2019) Oxygen-vacancy-introduced BaSnO3ā€“Ī“ photoanodes with tunable band structures for efficient solar-driven water splitting. Adv Mater 31:1903316

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kumar AA, Kumar A, Quamara JK (2018a) Cetyltriammonium bromide assisted synthesis of lanthanum containing barium stannate nanoparticles for application in dye sensitized solar cells. Phys Status Solidi A 215:1700723

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kumar AA, Kumar A, Quamara JK (2018b) Cetyltrimethyl ammonium bromide stabilized lanthanum doped SrSnO3 nanoparticle photoanode for dye sensitized solar cell application. Solid State Commun 269:6ā€“10

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kumar AA, Singh J, Rajput DS, Placke A, Kumar A, Kumar J (2018c) Facile wet chemical synthesis of Er3+/Yb3+ co-doped BaSnO3 nano-crystallites for dye-sensitized solar cell application. Mater Sci Semicond Process 83:83ā€“88

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kumar NS, Ibrahim AA, Dhar A, Vekariya RL (2019) Optoelectrical characterization of different fabricated donor substituted benzothiazole based sensitizers for efficient DSSCs. J Photochem Photobiol A 372:35ā€“41

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Li Y, Zhang H, Guo B, Wei M (2012) Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition. Electrochim Acta 70:313ā€“317

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Li H, Gao Y, Gao D, Wang Y (2019) Effect of oxide defect on photocatalytic properties of MSnO3 (MĀ =Ā Ca, Sr, and Ba) photocatalysts. Appl Catal B 243:428ā€“437

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lilge TS, das Neves Stigger AR, Fernandes CD, Gularte LT, Raubach CW, da Silva Cava S, Jardim LG, Valerio MEG, Moreira ML (2020) Increase of Voc using heterojunctions of BaTiO3 without sensitization. Ceram Int 46:4907ā€“4913

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mahalingam S, Abdullah H (2016) Electron transport study of indium oxide as photoanode in DSSCs: a review. Renew Sust Energ Rev 63:245ā€“255

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mahmoud MS, Motlak M, Barakat NA (2019) Facile synthesis and characterization of two dimensional SnO2-decorated graphene oxide as an effective counter electrode in the DSSC. Catalysts 9:139

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Marianne G, Knight KS, Finn W (2005) High temperature structural phase transitions in SrSnO3 perovskite. Mater Res Bull 40:507ā€“520

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mehmood U, Afzaal M, Al-Ahmed A, Yates HM, Hakeem AS, Ali H, Sulaiman FA (2017) Transparent conductive oxide films for high-performance dye-sensitized solar cells. IEEE J Photovolt 7:518ā€“524

    ArticleĀ  Google ScholarĀ 

  • Moreira E, Henriques JM, Azevedo DL, Caetano EWS, Freire VN, Albuquerque EL (2011) Structural, optoelectronic, infrared and Raman spectra of orthorhombic SrSnO3 from DFT calculations. J Solid State Chem 184:921ā€“928

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Moshtaghi S, Gholamrezaei S, Niasari MS (2017) Nano cube of CaSnO3: facile and green co-precipitation synthesis, characterization and photocatalytic degradation of dye. J Mol Struct 1134:511ā€“519

    ArticleĀ  CASĀ  Google ScholarĀ 

  • MuƱoz YHO, Ponce M, PĆ”ez JER (2015) Comparative study of two wet chemical methods of BaSnO3 synthesis: mechanism of formation of mixed oxide. Powder Technol 279:86ā€“95

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Muthukutty B, Karthik R, Chen SM, Abinaya M (2019) Designing novel perovskite-type strontium stannate (SrSnO3) and its potential as an electrode material for the enhanced sensing of anti-inflammatory drug mesalamine in biological samples. New J Chem 43:12264ā€“12274

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Myung CW, Lee G, Kim KS (2018) La-doped BaSnO3 electron transport layer for perovskite solar cells. J Mater Chem A 6:23071ā€“23077

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Najafabadi HA, Fattahi AR, Asemi M, Ghanaatshoar M (2020) Performance enhancement of dye-sensitized solar cells by plasma treatment of BaSnO3 photoanode. J Alloys Compd 818:152856

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Omar A, Ali MS, Abd Rahim N (2020) Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: a review. Sol Energy 207:1088ā€“1121

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Payne C, Mike P, Michael T, Douglas CA, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Modern Phys 64:1045

    Google ScholarĀ 

  • Pfaff G (1995) Chemical synthesis of calcium stannates from peroxo precursors. Mater Sci Eng 33:156ā€“161

    ArticleĀ  Google ScholarĀ 

  • Pfaff G (2000) Preparation and characterization of the strontium stannates SrSnO3 and Sr2SnO4. J Mater Sci 12:3017ā€“3021

    ArticleĀ  Google ScholarĀ 

  • Portillo-Cortez K, Martinez A, Dutt A, Santana G (2019) N719 derivatives for application in a dye-sensitized solar cell (DSSC): a theoretical study. J Phys Chem A 123:10930ā€“10939

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Prajapati MJ, Vardhan RV, Mandal S (2019) Effect of lanthanum on the phase evolution of perovskite barium stannate synthesized through polymerized complex method. Ceram Int 45:17420ā€“17428

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Prakash A, Xu A, Faghaninia A, Shukla S, Ager JW, Lo CS, Jalan B (2017) Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cmāˆ’1. Nat Commun 8:1ā€“9

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pugazhendhi K, Dā€™Almeida S, Kumar N, Mary JSS, Tenkyong T, Sharmila DJ, Madhavan J, Shyla JM (2018) Hybrid TiO2/ZnO and TiO2/Al plasmon impregnated ZnO nanocomposite photoanodes for DSSCs: synthesis and characterisation. Mater Res Express 5:045053

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Purushothamreddy N, Kovendhan M, Dileep RK, Veerappan G, Kumar KS, Joseph DP (2020) Synthesis and characterization of nanostructured La-doped BaSnO3 for dye-sensitized solar cell application. Mater Chem Phys 250:123137

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rajamanickam N, Soundarrajan P, Vendra VK, Jasinski JB, Sunkara MK, Ramachandran K (2016) Efficiency enhancement of cubic perovskite BaSnO 3 nanostructures-based dye sensitized solar cells. Phys Chem Chem Phys 18:8468ā€“8478

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rajamanickam N, Soundarrajan P, Jayakumar K, Ramachandran K (2017) Improve the power conversion efficiency of perovskite BaSnO3 nanostructures based dye-sensitized solar cells by Fe doping. Sol Energy Mater Sol Cells 166:69ā€“77

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rajamanickam N, Jayakumar K, Ramachandran K (2018) Effect of iron doping on magnetic and electrical properties of BaSnO3 nanostructures. J Mater Sci Mater Electron 29:19880ā€“19888

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rajamanickam N, Soundarrajan P, Kumar SS, Jayakumar K, Ramachandran K (2019) Boosting photo charge carrier transport properties of perovskite BaSnO3 photoanodes by Sr doping for enhanced DSSCs performance. Electrochim Acta 296:771ā€“782

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rajamanickam N, Isogami S, Ramachandran K (2020) Effect of Co doping for improved photovoltaic performance of dye-sensitized solar cells in BaSnO3 nanostructures. Mater Lett 275:128139

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Robert SD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenide. Acta Crystallogr A 32:751ā€“767

    ArticleĀ  Google ScholarĀ 

  • Roy A, Das PP, Selvaraj P, Sundaram S, Devi PS (2018) Perforated BaSnO3 nanorods exhibiting enhanced efficiency in dye sensitized solar cells. ACS Sustain Chem Eng 6:3299ā€“3310

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Roy A, Das PP, Selvaraj P, Devi PS, Sundaram S (2019a) Template free synthesis of CdSnO3 micro-cuboids for dye sensitized solar cells. J Photoch Photobio A 380:111824

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Roy A, Mukhopadhyay S, Devi PS, Sundaram S (2019b) Polyaniline-layered rutile TiO2 nanorods as alternative photoanode in dye-sensitized solar cells. ACS Omega 4:1130ā€“1138

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ruess R, Scarabino S, Ringleb A, Nonomura K, Vlachopoulos N, Hagfeldt A, Wittstock G, Schlettwein D (2019) Diverging surface reactions at TiO2-or ZnO-based photoanodes in dye-sensitized solar cells. Phys Chem Chem Phys 21:13047ā€“13057

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Saadi S, Nazari B (2019) Recent developments and applications of nanocomposites in solar cells: a review. J Compos Compounds 1:48ā€“58

    ArticleĀ  Google ScholarĀ 

  • Sharma K, Sharma V, Sharma SS (2018) Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res Lett 13:381

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shelke RS, Thombre SB, Patrikar SR (2017) Status and perspectives of dyes used in dye sensitized solar cells. Int J Renew Energ Resou 3:54ā€“61

    Google ScholarĀ 

  • Shen Z, Jin S, Hao H, Hou H, Zhang G, Bi J, Yan S, Gao W, Liu G (2019) Synthesis and characterization of Sm3+-doped barium stannate down-conversion nanocrystals and its application in dye-sensitized solar cells. Mater Chem Phys 230:215ā€“220

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shin SS, Kim JS, Suk JH, Lee KD, Kim DW, Park JH, Cho IS, Hong KS, Kim JY (2013) Improved quantum efficiency of highly efficient perovskite BaSnO3- based dye-sensitized solar cells. ACS Nano 7:1027ā€“1035

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shin SS, Yeom EJ, Yang WS, Hur S, Kim MG, Im J, Seo J, Noh JH, Seok SI (2017) Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356:167ā€“171

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shin SS, Suk JH, Kang BJ, Yin W, Lee SJ, Noh JH, Ahn TK, Rotermund F, Cho IS, Seok SI (2019) Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy Environ Sci 12:958ā€“964

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shu L, Sunarso J, Hashim SS, Mao J, Zhou W, Liang F (2019) Advanced perovskite anodes for solid oxide fuel cells: a review. Int J Hydrog Energy 44:31275ā€“31304

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sinha D, De D, Goswami D, Mondal A, Ayaz A (2019) ZnO and TiO2 nanostructured dye sensitized solar photovoltaic cell. Mater Today Proc 11:782ā€“788

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Somdee A, Osotchan T (2019) Effect of precipitating agent NaOH on the synthesis of SrTiO3/TiO2 heterostructure for dye-sensitized solar cells. Mater Chem Phys 229:210ā€“214

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Su R, Lyu L, Elmorsy MR, El-Shafei A (2020) Structural studies and photovoltaic investigation of indolo [2, 3-b] quinoxaline-based sensitizers/co-sensitizers achieving highly efficient DSSCs. New J Chem 44:2797ā€“2812

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Subalakshmi K, Kumar KA, Paul O, Saraswathy S, Pandurangan A, Senthilselvan J (2019) Platinum-free metal sulfide counter electrodes for DSSC applications: structural, electrochemical and power conversion efficiency analyses. Sol Energy 193:507ā€“518

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sumithra S, Jaya NV (2018) Structural, optical and magnetization studies of Fe-doped CaSnO3 nanoparticles via hydrothermal route. J Mater Sci Mater Electron 29:4048ā€“4057

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wan T, Ramakrishna S, Liu Y (2018) Recent progress in electrospinning TiO2 nanostructured photo-anode of dye-sensitized solar cells. J Appl Polym Sci 135:45649

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang H, Hu YH (2012) Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ Sci 5(8):8182ā€“8188

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Xie F, Li Y, Xiao T, Shen D, Wei M (2018) Efficiency improvement of dye-sensitized BaSnO3 solar cell-based surface treatments. Electrochim Acta 261:23ā€“28

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang Y, Zhao J, Cui C, Zhang Y, Hu H, Xu L, Pan J, Li C, Tang W (2016) Hydrothermal growth of ZnO nanowires scaffolds within mesoporous TiO2 photoanodes for dye-sensitized solar cells with enhanced efficiency. Electrochim Acta 196:348ā€“356

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang Y, Chung CH, Zhu R, Song TB (2017) Solution processed nanoparticle-nanowire composite film as a transparent conductor for opto-electronic devices. Johns Hopkins University, US Patent 9,560,754

    Google ScholarĀ 

  • Yin Y, Shen Y, Zhou P, Lu R, Li A, Zhao S, Liu W, Wei D, Wei K (2020) Fabrication, characterization and n-propanol sensing properties of perovskite-type ZnSnO3 nanospheres based gas sensor. Appl Surf Sci 509:145335

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zainudin SNF, Abdullah H, Markom M (2019) Electrochemical studies of tin oxide based-dye-sensitized solar cells (DSSC): a review. Mater Sci Mater Electron 30:5342ā€“5356

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zeng K, Chen Y, Zhu WH, Tian H, Xie Y (2020) Efficient solar cells based on concerted companion dyes containing two complementary components: an alternative approach for cosensitization. J Am Chem Soc 142(11):5154ā€“5161

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang W, Junwang T, Jinhua Y (2007) Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (MĀ =Ā Ca, Sr, and Ba) photocatalysts. J Mater Res 22:1859ā€“1871

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang Y, Cui Z, Zhu L, Zhao Z, Liu H, Wu Q, Wang J, Huang H, Fu Z, Lu Y (2020) Negative effect of oxygen vacancies on ferromagnetism in Ru-doped BaSnO3 materials. Appl Phys Lett 117(5):052406

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhao F, Guo Y, Wang X, Tao J, Jiang J, Hu Z, Chu J (2019) Enhanced performance of carbon-based planar CsPbBr3 perovskite solar cells with room-temperature sputtered Nb2O5 electron transport layer. Sol Energy 191:263ā€“271

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhu L, Ye J, Zhang X, Zheng H, Liu G, Pan X, Dai S (2017) Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer. J Mater Chem A 5:3675ā€“3682

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astakala Anil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, A., Veerla, S.C., Anand, K.V., Kumar, A.A. (2021). Alkaline Earth Stannate Nanomaterials as an Electron Transport Layer in Dye-Sensitized Solar Cells. In: Hussain, C.M., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics