Skip to main content

Advances in Green Polymer/Ceramic Nanocomposite for a Sustainable Environment

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

Sustainable development is a universally perceived command and it incorporates green or eco-friendly practices. Such spontaneous practices in various sections such as green technology envelop synthesis, processing, handling, and procedure advancement, likewise performance assessment and unwavering quality. Synthesis of green materials is planned as a key empowering influence of sustainable development. The green nanocomposite concept for practical future speaks to a course for making new and innovative materials, in the zone of characteristic polymers. P&C nanocomposites have discovered broad applications in energy storages, aviation applications, biomedical usage, and environmental application. Unique, special, and multifunctional properties emerging because of the scattering of nanoparticles in inorganic matrix are quickly examined followed by its environmental applications. This strategy of P&C nanocomposites and increase in the electrical, mechanical, and catalytic qualities are attributed by the inorganic materials and the polymeric grid, which impact enhanced attributes such as mechanical steadiness, corrosion resistivity, and little coefficients of friction. Cost-proficient synthesis route and great processability with traditional procedures are the two prime prerequisites for bringing more P&C nanocomposites available. This chapter will give a critical overview of the best advances of polymer nanocomposites, mechanical difficulties, challenges in design/implementation, and future perspectives. The chapter will fill in as a thorough asset on applications of P&C nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ashori A (2008) Wood-plastic composites as promising green-composites for automotive industries! Bioresour Technol 99:4661–4667

    Article  CAS  Google Scholar 

  • Avérous L, Digabel FL (2006) Properties of biocomposites based on lignocellulosic fillers. Carbohydr Polym 66:480–493

    Article  CAS  Google Scholar 

  • Azeredo HMC, Mattoso LHC, Wood D, Williams TG, Avena-Bustillos RJ, Mchugh TH (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74:31–35

    Article  CAS  Google Scholar 

  • Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fiber be used in structural applications? Compos Sci Technol 67:462–470

    Article  CAS  Google Scholar 

  • Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14:617–630

    Article  CAS  Google Scholar 

  • Chang J, An YU, Cho D, Giannelis EP (2003) Poly (lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II). Polymer 44:3715–3720

    Article  CAS  Google Scholar 

  • Demetrakakes P (2010) Nanocomposites raise barriers, but also face them: clay based additives increase the barrier qualities of plastics, but obstacles to commercialization must be overcome. Food & Drug Packaging. Available from: http://www.findarticles.com/p/articles/mi m0UQX/is 12 66/ai 96123509. Accessed 19 Oct 2010

  • Dicker MP, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos A Appl Sci Manuf 56:280–289

    Article  CAS  Google Scholar 

  • Drzal LT (2010) Sustainable biodegradable green nanocomposites from bacterial bioplastic for automotive applications. http://www.egr.msu.edu/cmsc/biomaterials/index.html. Accessed 20 Aug 2010

  • George ER, Sullivan TM, Park EH (1994) Preparation of high moisture content thermoplastic polyester starch. Polym Eng Sci 34:17–24

    Article  CAS  Google Scholar 

  • Guan J, Hanna MA (2006) Selected morphological and functional properties of extruded acetylated starch-cellulose foams. Bioresour Technol 97:1716–1726

    Article  CAS  Google Scholar 

  • Guimarães JL, Wypych F, Saul CK, Ramos LP, Satyanarayana KG (2010) Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohydr Polym 80:130–138

    Article  CAS  Google Scholar 

  • Harada M, Ohya T, Iida K, Hayashi H, Hirano K, Fukuda H (2007) Increased impact strength of biodegradable poly (lactic acid)/poly (butylene succinate) blend composites by using isocyanate as a reactive processing agent. J Appl Polym Sci 106:1813–1820

    Article  CAS  Google Scholar 

  • Hay JN, Shaw SJ (2010) Nanocomposites – properties and applications. Available online: http://www.azom.com/Details.asp?ArticleID=921. Accessed 15 Aug 2010

  • Huskic M, Igon MZ (2007) PMMA/MMT nanocomposites prepared by one-step in situ intercalative solution polymerization. Eur Polym J 43:4891–4897

    Article  CAS  Google Scholar 

  • Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571

    Article  CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    Article  CAS  Google Scholar 

  • Kausar A (2014a) Formation and properties of poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate)/polystyrene composites reinforced with graphene oxide-nanodiamond. Am J Polym Sci 4:54–62

    Google Scholar 

  • Kausar A (2014b) Mechanical, thermal, and electrical properties of epoxy matrix composites reinforced with polyamide-grafted-MWCNT/poly (azo-pyridine-benzophenone-imide)/polyaniline nanofibers. Int J Polym Mater Polym Biomater 63:831–839

    Article  CAS  Google Scholar 

  • Kausar A (2015) Nanodiamond/MWCNT-based polymeric nanofiber reinforced poly(bisphenol A-co-epichlorohydrin). Malays Polym J 10:23–32

    Google Scholar 

  • Kausar A (2016) Waterborne polyurethane-coated polyamide/fullerene composite films: mechanical, thermal, and flammability properties. Int J Polym Anal Charact 21:275–285

    Article  CAS  Google Scholar 

  • Kausar A (2017) Carbon nano onion as versatile contender in polymer compositing and advance application. Fullerenes Nanotubes Carbon Nanostruct 25:109–123

    Article  CAS  Google Scholar 

  • Kausar A (2018) Eco-polymer and carbon nanotube composite: safe technology. In: Handbook of ecomaterials. Springer, Cham, pp 1–16

    Google Scholar 

  • Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345

    Article  CAS  Google Scholar 

  • Kesel CD, Wauven CV, David C (1997) Biodegradation of polycaprolactone and its blends with poly(vinylalcohol) by micro-organisms from a compost of household refuse. Polym Degrad Stab 55:107–113

    Article  Google Scholar 

  • Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B Eng 44:120–127

    Article  CAS  Google Scholar 

  • Kumar AP, Singh RP (2008) Biocomposites of cellulose reinforced starch: improvement of properties by photo-induced crosslinking. Bioresour Technol 99:8803–8809

    Article  CAS  Google Scholar 

  • Lee JH, Park TG, Park HS, Lee DS, Lee YK, Yoon SC, Nam JD (2002) Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold. Biomaterials 24:2773–2778

    Article  CAS  Google Scholar 

  • Lee S, Kang I, Doh G, Yoon H, Park B, Wu Q (2008) Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment. J Thermoplast Compos Mater 21:209–223

    Article  CAS  Google Scholar 

  • Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos Part A 38:1664–1674

    Article  CAS  Google Scholar 

  • Liu D, Zhong T, Chang PR, Li K, Wu Q (2010) Starch composites reinforced by bamboo cellulosic crystals. Bioresour Technol 101:2529–2536

    Article  CAS  Google Scholar 

  • Ma XF, Yu JG, Wang N (2007) Fly ash-reinforced thermoplastic starch composites. Carbohydr Polym 67:32–39

    Article  CAS  Google Scholar 

  • Mahadeva SK, Yun S, Kim J (2011) Flexible humidity and temperature sensor based on cellulose-polypyrrole nanocomposite. Sensors Actuators A Phys 165:194–199

    Article  CAS  Google Scholar 

  • Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K (2002) New polylactide/layered silicate nanocomposites: role of organoclay. Chem Mater 14:4654–4661

    Article  CAS  Google Scholar 

  • Majdzadeh-Ardakani K, Sadeghi-Ardakani S (2010) Experimental investigation of mechanical properties of starch/natural rubber/clay nanocomposites. Dig J Nanomater Biostruct 5:307–316

    Google Scholar 

  • Misra M, Park H, Mohanty AK, Drzal LT (2004) Injection molded “green” nanocomposite materials from renewable resources. Presented at the global plastics environmental conference, Detroit, 18–19 Feb 2004

    Google Scholar 

  • Nunes MRS, Silva RC, Silva JG Jr, Tonholo J, Ribeiro AS (2009) Preparation and morphological characterization of chitosan/clay nanocomposites. In: Proceedings of the 11th international conference on advanced materials, Rio de Jenero, 20–25 Sept 2009, pp 20–25

    Google Scholar 

  • Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly(L-lactide)-clay blend. J Polym Sci B Polym Phys 35:389–396

    Article  CAS  Google Scholar 

  • Pandey JK, Singh RP (2005) Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay-filled starch. Starch/Stärke 57:8–15

    Article  CAS  Google Scholar 

  • Pandey JK, Chu WS, Lee CS, Ahn SH (2007) Preparation characterization and performance evaluation of nanocomposites from natural fiber reinforced biodegradable polymer matrix for automotive applications. Presented at the international symposium on polymers and the environment: emerging technology and science, Bioenvironmental Polymer Society (BEPS), Vancouver, pp 17–20, Oct 2007

    Google Scholar 

  • Qu P, Gao Y, Wu G, Zhang L (2010) Nanocomposites of poly (lactic acid) reinforced with cellulose nanofibrils. Bioresources 5:1811–1823

    CAS  Google Scholar 

  • Reddy N, Yang Y (2009) Properties of natural cellulose fibers from hop stems. Carbohydr Polym 77:898–902

    Article  CAS  Google Scholar 

  • Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609

    Article  CAS  Google Scholar 

  • Sinha RS, Yamada K, Okamoto M, Ueda K (2002) New polylactide/layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2:1093–1096

    Article  CAS  Google Scholar 

  • Sithique MA, Alagar M (2010) Preparation and properties of bio-based nanocomposites from epoxidized soy bean oil and layered silicate. Malays Polym J 5:151–161

    Google Scholar 

  • Svagan A (2008) Bio-inspired cellulose nanocomposites and foams based on starch matrix. PhD thesis, Department of Fiber and Polymer Technology, KTH Chemical Science and Engineering, Stockholm

    Google Scholar 

  • Tate JS, Akinola AT, Kabakov D (2010) Bio-based nanocomposites: an alternative to traditional composites. J Technol Stud 1:25–32

    Google Scholar 

  • Teixeira E, Pasquini D, Antonio AS, Corradini CE, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78:422–431

    Article  CAS  Google Scholar 

  • Tunç S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. Food Sci Technol 44:465–472

    Google Scholar 

  • Wei L, Hu N, Zhang Y (2010) Synthesis of polymer–mesoporous silica nanocomposites. Materials 3:4066–4079

    Article  CAS  Google Scholar 

  • Zabihzadeh SM (2010) Water uptake and flexural properties of natural filler/HDPE composites. Bioresources 5:316–323

    CAS  Google Scholar 

  • Zadegan S, Hosainalipour M, Rezaie HR, Ghassai H, Shokrgozar MA (2011) Synthesis and biocompatibility evaluation of cellulose/hydroxyapatite nanocomposite scaffold in 1-n-allyl-3-methylimidazolium chloride. Mater Sci Eng 31:954–961

    Article  CAS  Google Scholar 

  • Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng 31:43–49

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathish Sundararaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

M, D., J, C., Sundararaman, S., D, P., J, A. (2021). Advances in Green Polymer/Ceramic Nanocomposite for a Sustainable Environment. In: Hussain, C.M., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_76-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_76-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics