Skip to main content

Biocompatible Polymeric Nanoparticles as Promising Candidates for Drug Delivery in Cancer Treatment

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

The use of polymeric nanoparticles (NPs) in pharmacology provides many benefits because this approach can increase the efficacy and selectivity of active compounds. However, development of new nanocarriers requires better understanding of the interactions between NPs and the immune system, allowing for the optimization of NP properties for effective drug delivery, especially for systemic delivery. Nanopolymers are constructed from biocompatible and biodegradable polymers which are one of the promising trends of biomaterial where the drug is dissolved, entrapped, encapsulated, or attached to a nanoparticle matrix. When biocompatible materials are applied to the body, it is expected to perform a desired response without any side effects. Polymeric NPs represent one of the most innovative noninvasive approaches for drug delivery applications. NPs’ main objective is to convey the therapeutic molecules, including drugs, proteins, and nucleic acids, directly into the target organ or tissue. Many polymers are used for the synthesis of NPs, and among the currently most employed materials, several biocompatible synthetic polymers, namely, polylactic acid (PLA), polylactic-co-glycolic acid (PLGA), and polyethylene glycol (PEG), are well appreciated. These molecules are made of simple monomers which are easily excreted without being toxic. NPs can be modified to target specific cells or cross membrane barriers. In this chapter the various types of biodegradable polymer NPs will be discussed with emphasis on their applications in cancer drug delivery, where both active and passive targeting are used to enhance efficacy and reduce systemic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61:4750–4755

    CAS  Google Scholar 

  • Adjei IM, Blanka S (2015) Modulation of the tumor microenvironment for cancer treatment: a biomaterials approach. J Funct Biomater 6:81–103

    Article  CAS  Google Scholar 

  • Aji Alex MR, Nehate C, Veeranarayanan S, Kumar DS, Kulshreshtha R, Koul V (2017) Self-assembled dual responsive micelles stabilized with protein for co-delivery of drug and siRNA in cancer therapy. Biomaterials 133:94–106

    Article  CAS  Google Scholar 

  • Azmat AK, Amer MA, Mumtaz J, Arun C, Mohammad AA (2019) Therapeutic potential of functionalized siRNA nanoparticles on regression of liver cancer in experimental mice. Sci Rep 9:15825

    Article  CAS  Google Scholar 

  • Bae YH (2009) Drug targeting and tumor heterogeneity. J Control Release 133:2–3

    Article  CAS  Google Scholar 

  • Beck RCR, Chaves PS, Goyanes A, Vukosavljevic B, Buanz A, Windbergs M, Basit AW, Gaisford S (2017) 3D printed tablets loaded with polymeric nanocapsules: an innovative approach to produce customized drug delivery systems. Int J Pharm 528:268–279

    Article  CAS  Google Scholar 

  • Chen W, Meng F, Cheng R, Zhong Z (2010) pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J Control Release 142:40–46

    Article  CAS  Google Scholar 

  • Choi KY, Correa S, Min J, Li J, Roy S, Laccetti KH et al (2019) Binary targeting of siRNA to hematologic cancer cells in vivo using layer-by-layer nanoparticles. Adv Funct Mater 29:1900018

    Article  CAS  Google Scholar 

  • Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  CAS  Google Scholar 

  • Ding H, Inoue S, Ljubimov AV et al (2010) Inhibition of brain tumor growth by intravenous poly(b-lmalic) acid nanobioconjugate with pH-dependent drug release. Proc Natl Acad Sci USA 107:18143–18148

    Article  CAS  Google Scholar 

  • Ding H, Portilla-Aries J, Patil R, Black KL, Ljubimova JY, Holler E (2011) Polymalic acid peptide copolymers: design and optimization for endosomolytic drug delivery. Biomaterials 32:5269–5278

    Article  CAS  Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  CAS  Google Scholar 

  • El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y, Gardiner C, Alvarez-Erviti L, Sargent IL, Wood MJA (2012) Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc 7(12):2112–2126

    Article  CAS  Google Scholar 

  • Eleonora C, Alessio C, Alice P, Alessandro DM, Brunella T, Carla E (2019) Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater 10:4

    Article  CAS  Google Scholar 

  • Emerich DF, Thanos CG (2006) The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 23:171–184

    Article  CAS  Google Scholar 

  • Fan Y, Moon JJ (2015) Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccine 3:662–685

    Article  CAS  Google Scholar 

  • Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58:1456–1459

    Article  CAS  Google Scholar 

  • Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64:866–884

    Article  CAS  Google Scholar 

  • Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9

    Article  CAS  Google Scholar 

  • Goksu O, Ozgur E, Nurgul KB (2019) Biocompatible nanopolymers in drug delivery systems and their recent electrochemical applications in drug assays. In: Hussain CM, Thomas S (eds) Handbook of polymer and ceramic nanotechnology. © Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-10614-0_24-1

  • Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Müller RH (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18:301–313

    Article  CAS  Google Scholar 

  • Grund S, Bauer M, Fischer D (2011) Polymers in drug delivery – state of the art and future trends. Adv Eng Mater 13:B61–B87

    Article  CAS  Google Scholar 

  • Honey PJ, Rijo J, Anju A, Anoop KR (2014) Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharm Sin B 4:120–127

    Article  Google Scholar 

  • Inoue S, Ding H, Portilla-Arias J et al (2011) Nanobioconjugate inhibition of HER2/neu signaling and synthesis provides efficient mouse breast cancer treatment. Cancer Res 71:1454–1464

    Article  CAS  Google Scholar 

  • Inoue S, Patil R, Portilla-Arias J et al (2012) Novel nanobioconjugate inhibiting EGFR expression in triple negative breast cancer. PLoS One 7(2):E3107

    Article  CAS  Google Scholar 

  • Khanal S, Adhikari U, Rijal NP, Bhattarai SR, Sankar J, Bhattarai N (2016) pH-responsive PLGA nanoparticle for controlled payload delivery of diclofenac sodium. J Funct Biomater 7:21

    Article  CAS  Google Scholar 

  • Kim HJ, Miyata K, Nomoto T, Zheng M, Kim A, Liu X, Cabral H, James Chridtie R, Nishiyama N, Kataoka K (2014) siRNA delivery from triblock copolymer micelles with spatially-ordered components of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core. Biomaterials 35:4548–4556

    Article  CAS  Google Scholar 

  • Kim H, Niu L, Larson P, Kucaba TA, Murphy KA, James BR, Ferguson DM, Griffith TS, Panyam J (2018) Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials 164:38–53

    Article  CAS  Google Scholar 

  • Kong N, Deng M, Sun XN, Chen YD, Sui XB (2018) Polydopamine-functionalized CA- (PCL-ran-PLA) nanoparticles for target delivery of docetaxel and chemo-photothermal therapy of breast cancer. Front Pharmacol 9:125

    Article  CAS  Google Scholar 

  • Kopecek J (2010) Kopecková P. HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev 62:122–149

    Article  CAS  Google Scholar 

  • Koren E, Torchilin VP (2012) Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 18:385–393

    Article  CAS  Google Scholar 

  • Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11:265–283

    Article  CAS  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18

    Article  CAS  Google Scholar 

  • Lammers T (2010) Improving the efficacy of combined modality anticancer therapy using HPMA copolymer-based nanomedicine formulations. Adv Drug Deliv Rev 62:203–230

    Article  CAS  Google Scholar 

  • Lammers T, Subr V, Ulbrich K, Hennink WE, Storm G, Kiessling F (2010) Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy. Nano Today 5:197–212

    Article  CAS  Google Scholar 

  • Lee JH, Nan A (2012) Combination drug delivery approaches in metastatic breast cancer. J Drug Deliv Vol 2012, p 1–17. https://doi.org/10.1155/2012/915375. Article ID 915375

  • Li C, Wallace S (2008) Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 60:886–898

    Article  CAS  Google Scholar 

  • Liu S, Gordiichuk P, Wu Z-S et al (2015) Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nat Commun 6:8817

    Article  CAS  Google Scholar 

  • Liu S, Zhang J, Dong R et al (2016) Two-dimensional mesoscale-ordered conducting polymers. Angew Chem Int Ed 55:12516–12521

    Article  CAS  Google Scholar 

  • Liu Y, Wei M, Hu Y et al (2018) An electrochemical sensor based on a molecularly imprinted polymer for determination of anticancer drug Mitoxantrone. Sensors Actuators B Chem 255:544–551

    Article  CAS  Google Scholar 

  • Ljubimova JY, Holler E (2012) Biocompatible nanopolymers: the next generation of breast cancer treatment? Nanomedicine (Lond) 7(10):1467–1470

    Article  CAS  Google Scholar 

  • Mokhtarzadeh A, Alibakhshi A, Yaghoobi H et al (2016a) Recent advances on biocompatible and biodegradable nanoparticles as gene carriers. Expert Opin Biol Ther 16:771–785

    Article  CAS  Google Scholar 

  • Mokhtarzadeh A, Alibakhshi A, Hejazi M et al (2016b) Bacterial-derived biopolymers advanced natural nanomaterials for drug delivery and tissue engineering. TrAC Trends Anal Chem 82:367–384

    Article  CAS  Google Scholar 

  • Mokhtarzadeh A, Alibakhshi A, Hashemi M et al (2017) Biodegradable nano-polymers as delivery vehicles for therapeutic small non-coding ribonucleic acids. J Control Release 245:116–126

    Article  CAS  Google Scholar 

  • Moraru AD, Costuleanu M, Sava A et al (2014) Intraocular biodistribution of intravitreal injected chitosan/gelatin nanoparticles. Romanian J Morphol Embryol 55:869–875

    Google Scholar 

  • Nishiyama N, Bae Y, Miyata K, Fukushima S, Kataoka K (2005) Smart polymeric micelles for gene and drug delivery. Drug Discov Today 2:21–26

    Article  CAS  Google Scholar 

  • Park J, Fong PM, Lu J, Russell KS, Booth CJ, Saltzman WM, Fahmy TM (2009) PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine 5:410–418

    Article  CAS  Google Scholar 

  • Patel MP, Patel RR, Patel JK (2010) Chitosan mediated targeted drug delivery system: a review. J Pharm Pharm Sci 13:536–557

    Article  CAS  Google Scholar 

  • Patil R, Portilla-Arias J, Ding H et al (2010) Temozolomide delivery to tumor cells by a multifunctional nano vehicle based on poly(b-l-malic acid). Pharm Res 27:2317–2329

    Article  CAS  Google Scholar 

  • Peyton S, Hung VTN, Jeremiah AJ (2019) Tailored silyl ether monomers enable backbone-degradable polynorbornene-based linear, bottlebrush and star copolymers through ROMP. Nat Chem 11:1124–1132

    Article  CAS  Google Scholar 

  • Poo H, Park C, Kwak M-S et al (2010) New biological functions and applications of high-molecular mass poly-g-glutamic acid. Chem Biodivers 7:1555–1562

    Article  CAS  Google Scholar 

  • Rani S, Gothwal A, Khan I et al (2018) Smartly engineered PEGylated di-block Nanopolymeric micelles: duo delivery of isoniazid and rifampicin against Mycobacterium tuberculosis. AAPS PharmSciTech 19:3237–3248

    Article  CAS  Google Scholar 

  • Roy A, Singh MS, Upadhyay P, Bhaskar S (2010) Combined chemo-immunotherapy as a prospective strategy to combat cancer: a nanoparticle based approach. Mol Pharm 7:1778–1788

    Article  CAS  Google Scholar 

  • Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, Bertin SL, Reppen TW, Chu Q, Blokhin AV, Hagstrom JE, Wolff JA (2007) Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci USA 104:12982–12987

    Article  CAS  Google Scholar 

  • Rudzinski WE, Aminabhavi TM (2010) Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm 399:1–11

    Article  CAS  Google Scholar 

  • Sanna V, Singh CK, Jashari R, Adhami VM, Chamcheu JC, Rady I, Sechi M, Mukhtar H, Siddiqui IA (2017) Targeted nanoparticles encapsulating (-)-epigallocatechin-3- gallate for prostate cancer prevention and therapy. Sci Rep 7:41573

    Article  CAS  Google Scholar 

  • Sawant RM, Hurley JP, Salmaso S, Kale A, Tolcheva E, Levchenko TS, Torchilin VP (2006) “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 17:943–949

    Article  CAS  Google Scholar 

  • Shafiei-Irannejad V, Samadi N, Salehi R, Yousefi B, Rahimi M, Akbarzadeh A, Zarghami N (2018) Reversion of multidrug resistance by co-encapsulation of doxorubicin and metformin in poly (lactide-co-glycolide)-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Pharm Res 35:119

    Article  CAS  Google Scholar 

  • Shi Z, Gao X, Ullah MW et al (2016) Electroconductive natural polymer-based hydrogels. Biomaterials 111:40–54

    Article  CAS  Google Scholar 

  • So JL, Min JK, Ick CK, Thomas MR (2016) Delivery strategies and potential targets for siRNA in major cancer types. Adv Drug Deliv Rev 104:2–15

    Article  CAS  Google Scholar 

  • Subhan MA, Torchilin VP (2020) siRNA based drug design, quality, delivery and clinical translation. Nanomedicine 29:102239

    Article  CAS  Google Scholar 

  • Sylwia Ł, Krzysztof S, Ewa B, Marta DW (2015) Biocompatible polymeric nanoparticles as promising candidates for drug delivery. Langmuir 31:6415–6425

    Article  CAS  Google Scholar 

  • Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172

    Article  CAS  Google Scholar 

  • Torchilin VP (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135

    Article  CAS  Google Scholar 

  • Varshosaz J (2012) Dextran conjugates in drug delivery. Expert Opin Drug Deliv 9:509–523

    Article  CAS  Google Scholar 

  • Wahlgren J, Karlson TDL, Brisslert M, Sani FV, Telemo E, Sunnerhagen P, Valadi H (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40:130

    Article  CAS  Google Scholar 

  • Wang JJ, Zeng ZW, Xiao RZ et al (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine 6:765–774

    CAS  Google Scholar 

  • Wissing SA, Kayser O, Müller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56:1257–1272

    Article  CAS  Google Scholar 

  • Xin H, Jiang X, Gu J et al (2011) Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 32:4293–4305

    Article  CAS  Google Scholar 

  • Yadavalli T, Ramasamy S, Chandrasekaran G et al (2015) Dual responsive PNIPAM–chitosan targeted magnetic nanopolymers for targeted drug delivery. J Magn Magn Mater 380:315–320

    Article  CAS  Google Scholar 

  • Yea H, Jina L, Hua R et al (2006) Poly(g,l-glutamic acid)–cisplatin conjugate effectively inhibits human breast tumor xenografted in nude mice. Biomaterials 27:5958–5965

    Article  CAS  Google Scholar 

  • Yi L, Thavasyappan T, Doo SL (2018) Co-delivery of drugs and genes using polymeric nanoparticles for synergistic cancer therapeutic effects. Adv Healthc Mater 7:1700886

    Article  CAS  Google Scholar 

  • Yong KS, Sung WK (2020) Recent advances in polymeric drug delivery systems. Biomaterials Research 24(1):12

    Article  CAS  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Abdus Subhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Subhan, M.A., Torchilin, V.P. (2021). Biocompatible Polymeric Nanoparticles as Promising Candidates for Drug Delivery in Cancer Treatment. In: Hussain, C.M., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_80-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_80-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics