Skip to main content

Biotechnological Production of Useful Phytochemicals from Adventitious Root Cultures

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Abstract

A potent cluster of phytochemicals produced within plants are used as pharmaceuticals, health-promoting substances, biopesticides/agricultural, and industrial chemicals. Various attempts of producing phytochemicals from cell cultures have been undertaken extensively since several decades. However, issues such as low yields and unpredictable behavior of cell lines in the effective production are the barriers in cell cultures. On the other hand, because of their genetic, biochemical stability, and biosynthetic capabilities, transformed roots and adventitious roots have also been tested for in vitro production of useful phytochemicals; however, adventitious root cultures are preferred over hairy root cultures because of their natural origin and noninvolvement of any transgene in their production. In this review, we update the research developments in the area of adventitious root cultures and application of bioreactor technology for the production of adventitious root biomass and useful phytochemicals. In addition, few examples are presented in which adventitious root cultures are used successfully for the production of useful phytochemicals at commercial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Balandrin MF, Klocke JA, Wurtele ES, Bollinger WH (1985) Natural plant chemicals: sources of industrial and medicinal materials. Science 228:1154–1160

    Article  CAS  PubMed  Google Scholar 

  2. Baque MA, Shiragi HK, Moh SH, Lee EJ, Paek KY (2013) Production of biomass and bioactive compounds by adventitious root suspension cultures of Morinda citrifolia (L.) in a liquid-phase airlift balloon-type bioreactor. In Vitro Cell Dev Biol Plant 49:737–749

    Article  CAS  Google Scholar 

  3. Barrett B (2003) Medicinal properties of Echinacea: a critical review. Phytomedicine 10:66–86

    Article  CAS  PubMed  Google Scholar 

  4. Bruni R, Sacchetti G (2009) Factors affecting polyphenol biosynthesis in wild and field grown St. John’s wort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules 14:682–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23:180–185

    Article  CAS  PubMed  Google Scholar 

  6. Choi SM, Son SH, Yun SR, Kwon OW, Seon JH, Paek KY (2000) Pilot-scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell Tissue Org Cult 62:187–193

    Article  CAS  Google Scholar 

  7. Choi YE, Kim YS, Paek KY (2006) Types and designs of bioreactors for hairy root culture. In: Datta Gupta S, Ibraki Y (eds) Plant tissue culture engineering. Focus on biotechnology, vol 6. Springer, Dordrecht, pp 161–172

    Google Scholar 

  8. Chu CC (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proceedings of the symposium plant tissue culture. Science Press, Beijing, pp 43–50

    Google Scholar 

  9. Cui XH, Chakrabarty D, Lee EJ, Paek KY (2010a) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresour Technol 101:408–4716

    Article  Google Scholar 

  10. Cui XH, Murthy HN, Wu CH, Pake KY (2010b) Sucrose induced osmotic stress affects biomass, metabolite and antioxidant levels in root suspension culture of Hyperium perforatum L. Plant Cell Tissue Organ Cult 103:7–14

    Article  CAS  Google Scholar 

  11. Cui XH, Murthy HN, Wu CH, Paek KY (2010c) Adventitious root suspension cultures of Hypericum perforatum: effect of nitrogen source on production of biomass and secondary metabolites. In Vitro Cell Dev Biol Plant 46:437–444

    Article  CAS  Google Scholar 

  12. Cui XH, Murthy HN, Jin YX, Yim YH, Kim JY, Paek KY (2011) Production of adventitious root biomass and secondary metabolites of Hypericum perforatum L. in balloon type airlift bioreactor. Bioresour Technol 102:10072–10079

    Article  CAS  PubMed  Google Scholar 

  13. Cui HY, Baque MA, Lee EJ, Paek KY (2013) Scale-up of adventitious root cultures of Echinacea angustifolia in a pilot-scale bioreactor for the production of biomass and caffeic acid derivatives. Plant Biotechnol Rep 7:297–308

    Article  Google Scholar 

  14. Cui XH, Murthy HN, Paek KY (2014) Pilot-scale culture of Hypericum perforatum L.: adventitious roots in airlift bioreactors for the production of bioactive compounds. Appl Biochem Biotechnol 174:784–792

    Article  CAS  PubMed  Google Scholar 

  15. Drager B (2006) Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry 133:278–287

    Google Scholar 

  16. Facchini PJ (2001) Alkaloid synthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    Article  CAS  PubMed  Google Scholar 

  17. Gamborg OL, Miller RA, Ojima K (1968) Nutritional requirement of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  18. Gao Y, Wu CH, Piao XC, Han L, Gao R, Lian ML (2018) Optimization of culture medium components and culture period for production of adventitious roots of Echinacea pallida (Nutt.) Nutt. Plant Cell Tissue Organ Cult 135:299–307

    Article  CAS  Google Scholar 

  19. Georgiev MI, Eibl R, Zhong JJ (2013) Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97:3787–3800

    Article  CAS  PubMed  Google Scholar 

  20. Giri CC, Zaheer M (2016) Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky view appraisal. Plant Cell Tissue Organ Cult 126:1–18

    Article  CAS  Google Scholar 

  21. Han L, Piao XC, Jing J, Jiang XL, Yin CR, Lian ML (2019) A high production of flavonoids and anthraquinones via adventitious root culture of Oplopanax elatus and evaluating antioxidant activity. Plant Cell Tissue Organ Cult. (In press). https://doi.org/10.1007/s11240-018-05143-w

  22. Ho TT, Lee KJ, Lee JD, Bhushan S, Paek KY, Park SY (2017) Adventitious root culture of Polygonum multiflorum for phenolic compounds and its pilot-scale production in 500 L-tank. Plant Cell Tissue Organ Cult 130:167–181

    Article  CAS  Google Scholar 

  23. Ho TT, Jeong CS, Lee H, Park SY (2018) Effect of explant type and genotype on the accumulation of bioactive compounds in adventitious root cultures of Polygonum multiflorum. Plant Cell Tissue Organ Cult. (In press). https://doi.org/10.1007/s11240-018-01556-5

    Article  CAS  Google Scholar 

  24. Jeong JA, Wu CH, Murthy HN, Hahn EJ, Paek KY (2009) Application of an airlift bioreactor system for the production of adventitious root biomass and caffeic acid derivatives of Echinacea purpurea. Biotechnol Bioprocess Eng 14:91–98

    Article  CAS  Google Scholar 

  25. Jiang YJ, Piao XC, Liu JS, Jiang J, Lian ZX, Kim MJ, Lian ML (2015) Bioactive compound production by adventitious root culture of Oplopanax elatus in balloon-type airlift bioreactor systems and bioactivity property. Plant Cell Tissue Organ Cult 123:413–425

    Article  CAS  Google Scholar 

  26. Karioti A, Bilia AR (2010) Hypericins as potential leads for new therapeutics. Int J Mol Sci 11:562–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolites of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10

    Article  CAS  Google Scholar 

  28. Kim YS, Hahn EJ, Yeung EC, Paek KY (2003) Lateral root development and saponin accumulation as affected by IBA or NAA in adventitious root cultures of Panax ginseng C.A. Meyer. In Vitro Dev Biol Plant 39:245–249

    Article  CAS  Google Scholar 

  29. Kim YS, Hahn EJ, Murthy HN, Paek KY (2004) Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnol Lett 26:1619–1622

    Article  CAS  PubMed  Google Scholar 

  30. Lavie G, Mazur Y, Lavie D, Meruelo D (1995) The chemical and biological properties of hypericin – a compound with a broad spectrum biological activities. Med Res Rev 15:111–119

    Article  CAS  PubMed  Google Scholar 

  31. Lee EJ, Paek KY (2012) Effect of nitrogen source on biomass and bioactive compound production in submerged cultures of Eleutherococcus koreanum Nakai adventitious roots. Biotechnol Prog 28:508–514

    Article  CAS  PubMed  Google Scholar 

  32. Lee KJ, Park Y, Kim JY, Jeong TK, Yun KS, Paek KY, Park SY (2015) Production of biomass and bioactive compounds from adventitious root cultures of using air-lift bioreactors. J Plant Biotechnol 42:34–42

    Article  Google Scholar 

  33. Li SW, Xue L, Xu S, Feng H, An L (2009) Mediators, genes and signaling in adventitious rooting. Bot Rev 75:230–247

    Article  Google Scholar 

  34. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  35. Murthy HN, Praveen N (2013) Carbon sources and medium pH affects the growth of Withania somnifera (L.) Dunal. Adventitious roots and withanolide A production. Nat Prod Res 27:185–189

    Article  CAS  PubMed  Google Scholar 

  36. Murthy HN, Hahn EJ, Paek KY (2008) Adventitious roots and secondary metabolism. Chin J Biotechnol 24:711–716

    Article  CAS  Google Scholar 

  37. Murthy HN, Kim YS, Park SY, Paek KY (2014a) Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species. Appl Microbiol Biotechnol 98:7707–7717

    Article  CAS  PubMed  Google Scholar 

  38. Murthy HN, Lee EJ, Paek KY (2014b) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16

    Article  CAS  Google Scholar 

  39. Murthy HN, Georgiev MI, Kim YS, Jeong CS, Kim SJ, Park SY, Paek KY (2014c) Ginsenosides: prospective for sustainable biotechnological production. Appl Microbiol Biotechnol 98:6243–6254

    Article  CAS  PubMed  Google Scholar 

  40. Murthy HN, Kim YS, Park SY, Paek KY (2014d) Hypericins: biotechnological production of cell and organ cultures. Appl Microbiol Biotechnol 98:9187–9198

    Article  CAS  PubMed  Google Scholar 

  41. Murthy HN, Georgiev MI, Park SY, Dandin VS, Paek KY (2015) The safety assessment of food ingredients derived from plant cell, tissue and organ cultures. A review. Food Chem 176:426–432

    Article  CAS  PubMed  Google Scholar 

  42. Murthy HN, Dandin VS, Paek KY (2016) Tools for biotechnological production of useful phytochemicals from adventitious root cultures. Phytochem Rev 15:129–145

    Article  CAS  Google Scholar 

  43. Murthy HN, Dandin VS, Park SY, Paek KY (2018) Quality, safety and efficacy profiling of ginseng adventitious root produced in vitro. Appl Microbiol Biotechnol 102:7309–7317

    Article  CAS  PubMed  Google Scholar 

  44. Naik PM, Manohar SH, Praveen N, Upadhya V, Murthy HN (2012) Evaluation of bacoside-A content in different accessions and various organs of Bacopa monnieri (L.) Wettst. J Herbs Spices Med Plants 18:387–395

    Article  CAS  Google Scholar 

  45. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  PubMed  Google Scholar 

  46. Nosov AM (2012) Application of cell technologies for production of plant derived bioactive substances of plant origin. Appl Biochem Microbiol 48:609–624

    Article  CAS  Google Scholar 

  47. Olsson ME, Olofsson LM, Lindahl AL, Lundgreen A, Brodelius M, Brodelius PE (2009) Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretary trichomes of Artemisia annua L. Phytochemistry 70:1123–1128

    Article  CAS  PubMed  Google Scholar 

  48. Paek KY, Murthy HN, Hahn EJ (2009) Large scale culture of ginseng adventitious roots for production of ginsenosides. Adv Biochem Eng Biotechnol 113:151–176

    CAS  PubMed  Google Scholar 

  49. Praveen N, Murthy HN (2010) Production of withanolide-A from adventitious root cultures of Withania somnifera. Acta Physiol Plant 32:1017–1022

    Article  CAS  Google Scholar 

  50. Sangwan RS, Chaurasiaya ND, Lal P, Mishra L, Tuli R, Sangwan NS (2008) Withanolide A is inherently de novo biosynthesized in roots of the medicinal plant Ashwagandha (Withania somnifera). Physiol Plant 133:278–287

    Article  CAS  PubMed  Google Scholar 

  51. Shimomura K, Sudo H, Saga H, Kamada H (1991) Shikonin production and secretion by hairy root cultures of Lithospermum erythrorhizon. Plant Cell Rep 10:282–285

    Article  CAS  PubMed  Google Scholar 

  52. Spencer A, Hamill DJ, Rhodes MJC (1990) Production of terpenes by differentiated shoot cultures of Mentha citrata transformed with Agrobacterium tumefaciens T37. Plant Cell Rep 8:601–604

    Article  CAS  PubMed  Google Scholar 

  53. Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    Article  CAS  PubMed  Google Scholar 

  54. Staniek A, Bouwmeester H, Fraser PD, Kayser O, Martens S, Tissier A, van der Krol S, Wessjohann L, Warzecha H (2014) Natural products – learning chemistry from plants. Biotechnol J 9:326–336

    Article  CAS  PubMed  Google Scholar 

  55. Steingroewer J, Bley T, Georgiev V, Ivanov I, Lenk F, Marchev A, Pavlov A (2013) Bioprocessing of differentiated plant in vitro systems. Eng Life Sci 13:26–38

    Article  CAS  Google Scholar 

  56. Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules. Plant Biotechnol J 10:249–268

    Article  CAS  PubMed  Google Scholar 

  57. Wu CH, Dewir YH, Hahn EJ, Paek KY (2006) Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. J Plant Biol 49:193–199

    Article  CAS  Google Scholar 

  58. Wu CH, Murthy HN, Hahn EJ, Paek KY (2007a) Enhanced production of caftaric acid, chlorogenic acid and cichoric acid in suspension cultures of Echinacea purpurea by the manipulation of incubation temperature and photoperiod. Biochem Eng J 36:301–303

    Article  CAS  Google Scholar 

  59. Wu CH, Murthy HN, Hahn EJ, Paek KY (2007b) Improved production of caffeic acid derivatives in suspension cultures of Echinacea purpurea by medium replenishment strategy. Arch Pharm Res 30:945–949

    Article  CAS  PubMed  Google Scholar 

  60. Wu CH, Murthy HN, Hahn EJ, Paek KY (2007c) Large-scale cultivation of adventitious roots of Echinacea purpurea in airlift bioreactors for the production of cichoric acid, chlorogenic acid and caftaric acid. Biotechnol Lett 29:1179–1182

    Article  CAS  PubMed  Google Scholar 

  61. Wu CH, Murthy HN, Hahn EJ, Paek KY (2008) Establishment of adventitious root co-culture of Ginseng and Echinacea for the production of secondary metabolites. Acta Physiol Plant 30:891–896

    Article  CAS  Google Scholar 

  62. Wu SQ, Lian ML, Gao R, Park SY, Piao XC (2011) Bioreactor application on adventitious root culture of Astragalus membranaceus. In Vitro Cell Dev Biol Plant 47:719–724

    Article  CAS  Google Scholar 

  63. Wu CH, An D, Sun LN, Wang M, Chang GN, Zhao CY, Lian ML (2017) A novel co-culture system of adventitious roots of Echinacea species in bioreactors for high production of bioactive compounds. Plant Cell Tissue Organ Cult 130:301–311

    Article  CAS  Google Scholar 

  64. Wu CH, Tang J, Jin ZX, Wang M, Lieu ZQ, Huang T, Lian ML (2018) Optimizing co-culture conditions of adventitious roots of Echinacea pallida and E. purpurea in air-lift bioreactor systems. Biochem Eng J 132:206–216

    Article  CAS  Google Scholar 

  65. Yu KW, Hahn EJ, Paek KY (2000) Production of adventitious roots using bioreactors. Korean J Plant Tissue Cult 27:309–315

    Google Scholar 

Download references

Acknowledgments

Authors are thankful for funding by DST-PURSE Phase-II program and UGC-BSR mid-career award grant [No. F.19-223/2018 (BSR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosakatte Niranjana Murthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Murthy, H.N., Dalawai, D., Bhat, M.A., Dandin, V.S., Paek, KY., Park, SY. (2019). Biotechnological Production of Useful Phytochemicals from Adventitious Root Cultures. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics