Skip to main content

Bioproduction of Anticancer Podophyllotoxin and Related Aryltretralin-Lignans in Hairy Root Cultures of Linum Flavum L.

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Abstract

Podophyllotoxin (PPT) is the unique natural precursor of Etoposide, a topoisomerase II inhibitor drug, used in more than a dozen anticancer chemotherapy treatments. Etoposide is appearing on the list of essential medicines of the World Health Organization. PPT is still exclusively extracted from the rhizome of Podophyllum species, its main natural source. The supply of Podophyllum hexandrum plants is limited, since the occurrence of these plant species is scarce, collection is destructive, and the plants need a long regeneration period. As a consequence, this species is now endangered and listed on Appendix II of the Convention on International Trading of Endangered Species. Chemical synthesis of PPT is difficult due to the presence of four contiguous chiral centers and the presence of a base sensitive trans-lactone moiety. Alternatives are being actively searched, but so far, no wild plants have been described with similar PPT production capacity as compared to Podophyllum. However, several plants producing PPT or other related aryltetralin lignans (ATL) have been identified in recent decades, including the Linaceae. Given its high lignan accumulation capacity, Linum flavum is considered a promising alternative source of PPT and other related ATL. However, unlike the common flax L. usitatissimum, L. flavum has a low agricultural potential (e.g., slow growth and dehiscence of fruits). Therefore, in vitro cultures of plant cells and/or tissues provide an interesting alternative to whole L. flavum plants for the production of these valuable ATL. In particular, L. flavum hairy roots (HRs) accumulate high levels of ATL and it is also possible to further increase this ATL accumulation by the selection of the best genotype, optimization of cultures media and conditions and choice of carbon sources, use of plant growth regulators, elicitor treatments, or precursors’ addition. To date, the ATL accumulation levels can still be perceived insufficient for L. flavum HRs before being used as a commercially viable biotechnological production system. To reach this goal, a better knowledge of the mechanisms that regulate the metabolic flux of intermediates in the different branches of the ATL metabolic pathway will be an important prerequisite to direct the biosynthesis toward the production of a high amount of the desired PPT. In the future, metabolic engineering aiming at constructing the PPT pathway in a heterologous host is very appealing, but for that approach in-depth knowledge of the biosynthetic pathway toward PPT and other related ATL is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ATL:

Aryltetralin lignan

B5:

Gamborg B5

DPT:

Deoxypodophyllotoxin

DW:

Dry weight

FW:

Fresh weight

LS:

Linsmaier and Skoog

MPT:

Methoxypodophyllotoxin

MPTG:

Methoxypodophyllotoxin-β-D-glucoside

MS:

Murashige and Skoog

PPT:

Podophyllotoxin

PPTG:

Podophyllotoxin-β-D-glucoside

WPM:

Woody plant medium

References

  1. Takeda R, Hasegawa J, Shinozaki M (1990) The first isolation of lignans, megacerotonic acid and anthocerotonic acid, from non-vascular plants, anthocerotae (hornworts). Tetrahedron Lett 31:4159–4162. https://doi.org/10.1016/S0040-4039(00)97569-5

    Article  CAS  Google Scholar 

  2. Cullmann F, Becker H (1999) Lignans from the liverwort Lepicolea ochroleuca. Phytochemistry 52:1651–1656. https://doi.org/10.1016/S0031-9422(99)00372-6

    Article  CAS  Google Scholar 

  3. Scher JM, Zapp J, Becker H (2003) Lignan derivatives from the liverwort Bazzania trilobata. Phytochemistry 62:769–777. https://doi.org/10.1016/S0031-9422(02)00626-X

    Article  PubMed  CAS  Google Scholar 

  4. Wada H, Kido T, Tanala N et al (1992) Chemical and Chemotaxonomical studies of ferns. LXXXI. Characteristic lignans of blechnacerous ferns. Chem Pharm Bull 40:2099–2101

    Article  CAS  Google Scholar 

  5. Moss GP (2000) Nomenclature of lignans and neolignans (IUPAC recommendations 2000). Pure Appl Chem 72:1493–1523. https://doi.org/10.1351/pac200072081493

    Article  CAS  Google Scholar 

  6. Bernini R, Fabrizi G, Sferrazza A, Cacchi S (2009) Copper-catalyzed C-C bond formation through C-H functionalization: synthesis of multisubstituted indoles from N -aryl enaminones. Angew Chemie Int Ed 48:8078–8081. https://doi.org/10.1002/anie.200902440

    Article  CAS  Google Scholar 

  7. Pan J-Y, Chen S-L, Yang M-H et al (2009) An update on lignans: natural products and synthesis. Nat Prod Rep 26:1251. https://doi.org/10.1039/b910940d

    Article  PubMed  CAS  Google Scholar 

  8. Teponno RB, Kusari S, Spiteller M (2016) Recent advances in research on lignans and neolignans. Nat Prod Rep 33:1044–1092. https://doi.org/10.1039/C6NP00021E

    Article  PubMed  CAS  Google Scholar 

  9. Satake H, Ono E, Murata J (2013) Recent advances in the metabolic engineering of Lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements. J Agric Food Chem 61:11721–11729. https://doi.org/10.1021/jf4007104

    Article  PubMed  CAS  Google Scholar 

  10. Satake H, Koyama T, Bahabadi S et al (2015) Essences in metabolic engineering of lignan biosynthesis. Meta 5:270–290. https://doi.org/10.3390/metabo5020270

    Article  CAS  Google Scholar 

  11. Gang DR, Kasahara H, Xia ZQ et al (1999) Evolution of plant defense mechanisms: relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J Biol Chem 274:7516–7527. https://doi.org/10.1074/jbc.274.11.7516

    Article  PubMed  CAS  Google Scholar 

  12. Céspedes CL, Avila JG, Garcıá AM et al (2006) Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Zeitschrift für Naturforsch C 61:35–43. https://doi.org/10.1515/znc-2006-1-207

    Article  Google Scholar 

  13. Ayres DC, Loike JD (1990) Lignans: chemical, biological and clinical properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  14. Lainé E, Hano C, Lamblin F (2007) Les lignanes phytoestrogènes du lin sont-ils des bienfaiteurs méconnus? Phytothérapie. https://doi.org/10.1007/s10298-007-0237-3

  15. Lainé E, Hano C, Lamblin F (2009) Lignans. In: Knasmüller S, DeMarini DM, Johnson IT, Gerhuser C (eds) Chemoprevention of cancer and DNA damage by dietary factors. Wiley-VCH, Weinheim, pp 555–577

    Google Scholar 

  16. Lamblin F, Hano C, Fliniaux O et al (2008) Interest of lignans in prevention and treatment of cancers. Medecine/Sciences 24:511–520

    Article  Google Scholar 

  17. Charlton JL (1998) Antiviral activity of lignans. J Nat Prod 61:1447–1451. https://doi.org/10.1021/np980136z

    Article  PubMed  CAS  Google Scholar 

  18. von Krogh G (2001) Podophyllin office therapy against condyloma should be abandoned. Sex Transm Infect 77:409–412. https://doi.org/10.1136/sti.77.6.409

    Article  Google Scholar 

  19. Stähelin HF, von Wartburg A (1991) The chemical and biological route from podophyllotoxin glucoside to etoposide: ninth Cain memorial Award lecture. Cancer Res 51:5–15

    PubMed  Google Scholar 

  20. Schacter L (1996) Etoposide phosphate: what, why, where, and how? Semin Oncol 23:1–7

    PubMed  CAS  Google Scholar 

  21. Fleming RA, Miller AA, Stewart CF (1989) Etoposide: an update. Clin Pharm 8:274–293

    PubMed  CAS  Google Scholar 

  22. von Wartburg A, Stahelin H (1993) Etoposide. In: Lednicer D (ed) Chronicles of drug discovery. American Chemical Society, Washington, DC, pp 349–380

    Google Scholar 

  23. Gordaliza M, Garcı́a PA, Miguel del Corral JM et al (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44:441–459. https://doi.org/10.1016/j.toxicon.2004.05.008

    Article  PubMed  CAS  Google Scholar 

  24. Rust RW, Roth RR (1981) Seed production and seedling establishment in the Mayapple, Podophyllum peltatum L. Am Midl Nat 105:51. https://doi.org/10.2307/2425009

    Article  Google Scholar 

  25. Kumari A, Singh D, Kumar S (2017) Biotechnological interventions for harnessing podophyllotoxin from plant and fungal species: current status, challenges, and opportunities for its commercialization. Crit Rev Biotechnol 37:739–753. https://doi.org/10.1080/07388551.2016.1228597

    Article  PubMed  CAS  Google Scholar 

  26. Petersen M, Alfermann a W (2001) The production of cytotoxic lignans by plant cell cultures. Appl Microbiol Biotechnol 55:135–142. https://doi.org/10.1007/s002530000510

    Article  PubMed  CAS  Google Scholar 

  27. Fuss E (2003) Lignans in plant cell and organ cultures: an overview. Phytochem Rev 2:307–320. https://doi.org/10.1023/B:PHYT.0000045500.56476.f5

    Article  CAS  Google Scholar 

  28. Malik S, Bilba O, Gruz J et al (2014) Biotechnological approaches for producing aryltetralin lignans from Linum species. Phytochem Rev 13:893–913. https://doi.org/10.1007/s11101-014-9345-5

    Article  CAS  Google Scholar 

  29. Arroo RRJ, Alfermann AW, Medarde M et al (2002) Plant cell factories as a source for anti-cancer lignans. Phytochem Rev 1:27–35

    Article  CAS  Google Scholar 

  30. Dressler S, Repplinger M, Bayer C (2014) Linaceae. In: Flowering plants. Eudicots. Springer, Berlin/Heidelberg, pp 237–246

    Chapter  Google Scholar 

  31. Group TAP, Chase MW, Christenhusz MJM, et al (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. https://doi.org/10.1111/boj.12385

    Article  Google Scholar 

  32. McDill J, Repplinger M, Simpson BB, Kadereit JW (2009) The phylogeny of Linum and Linaceae subfamily linoideae, with implications for their systematics, biogeography, and evolution of heterostyly. Syst Bot 34:386–405. https://doi.org/10.1600/036364409788606244

    Article  Google Scholar 

  33. Schmidt TJ, Hemmati S, Klaes M et al (2010) Lignans in flowering aerial parts of Linum species – chemodiversity in the light of systematics and phylogeny. Phytochemistry 71:1714–1728. https://doi.org/10.1016/j.phytochem.2010.06.015

    Article  PubMed  CAS  Google Scholar 

  34. Schmidt TJ, Klaes M, Sendker J (2012) Lignans in seeds of Linum species. Phytochemistry 82:89–99. https://doi.org/10.1016/j.phytochem.2012.07.004

    Article  PubMed  CAS  Google Scholar 

  35. Vasilev N, Ebel R, Edrada RA et al (2008) Metabolic profiling of Lignan variability in Linum species of section Syllinum native to Bulgaria. Planta Med 74:273–280. https://doi.org/10.1055/s-2008-1034298

    Article  PubMed  CAS  Google Scholar 

  36. Esmaeilzadeh Bahabadi S, Sharifi M, Ahmadian Chashmi N et al (2014) Significant enhancement of lignan accumulation in hairy root cultures of Linum album using biotic elicitors. Acta Physiol Plant 36:3325–3331. https://doi.org/10.1007/s11738-014-1700-z

    Article  CAS  Google Scholar 

  37. Ionkova I, Fuss E (2009) Influence of different strains of agrobacterium rhizogenes on induction of hairy roots and lignan production in Linum tauricum ssp. tauricum YR – 2009/1/1. Pharmacogn Mag 5:14–18

    CAS  Google Scholar 

  38. Chashmi N, Sharifi M, Yousefzadi M et al (2011) The production of cytotoxic lignans by hairy root cultures of Linum album. World Acad Sci Eng Technol 80:401–402

    Google Scholar 

  39. Bhattacharyya D, Sinha R, Ghanta S et al (2012) Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Sci 10:34. https://doi.org/10.1186/1477-5956-10-34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bhattacharyya D, Hazra S, Banerjee A et al (2016) Transcriptome-wide identification and characterization of CAD isoforms specific for podophyllotoxin biosynthesis from Podophyllum hexandrum. Plant Mol Biol 92:1–23. https://doi.org/10.1007/s11103-016-0492-5

    Article  PubMed  CAS  Google Scholar 

  41. Weng J-K, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285. https://doi.org/10.1111/j.1469-8137.2010.03327.x

    Article  PubMed  CAS  Google Scholar 

  42. Suzuki S, Umezawa T (2007) Biosynthesis of lignans and norlignans. J Wood Sci 53:273–284. https://doi.org/10.1007/s10086-007-0892-x

    Article  CAS  Google Scholar 

  43. Markulin L, Corbin C, Renouard S et al (2019) Pinoresinol–lariciresinol reductases, key to the lignan synthesis in plants. Planta 249:1695–1714. https://doi.org/10.1007/s00425-019-03137-y

    Article  PubMed  CAS  Google Scholar 

  44. Umezawa T, Davin LB, Lewis NG (1990) Formation of the lignan, (−) secoisolariciresinol, by cell free extracts of Forsythia intermedia. Biochem Biophys Res Commun 171:1008–1014. https://doi.org/10.1016/0006-291X(90)90784-K

    Article  PubMed  CAS  Google Scholar 

  45. Davin LB, Bedgar DL, Katayama T, Lewis NG (1992) On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol. Phytochemistry 31:3869–3874. https://doi.org/10.1016/S0031-9422(00)97544-7

    Article  PubMed  CAS  Google Scholar 

  46. Davin LB, Wang H-BB, Crowell AL et al (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–367. https://doi.org/10.1126/science.275.5298.362

    Article  PubMed  CAS  Google Scholar 

  47. Lewis NG (1999) A 20th century roller coaster ride: a short account of lignification. Curr Opin Plant Biol 2:153–162

    Article  CAS  Google Scholar 

  48. Gang DR, Costa MA, Fujita M et al (1999) Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol 6:143–151. https://doi.org/10.1016/S1074-5521(99)89006-1

    Article  PubMed  CAS  Google Scholar 

  49. Halls SC, Lewis NG (2002) Secondary and quaternary structures of the (+)-Pinoresinol-forming dirigent protein †. Biochemistry 41:9455–9461. https://doi.org/10.1021/bi0259709

    Article  PubMed  CAS  Google Scholar 

  50. Halls SC, Davin LB, Kramer DM, Lewis NG (2004) Kinetic study of Coniferyl alcohol radical binding to the (+)-Pinoresinol forming dirigent protein †. Biochemistry 43:2587–2595. https://doi.org/10.1021/bi035959o

    Article  PubMed  CAS  Google Scholar 

  51. Kim K-W, Moinuddin SGA, Atwell KM et al (2012) Opposite stereoselectivities of dirigent proteins in Arabidopsis and Schizandra species. Am Soc Biochem Mol Biol 287:33957–33972. https://doi.org/10.1074/jbc.m112.387423

    Article  CAS  Google Scholar 

  52. Seneviratne HK (2017) Towards understanding dirigent protein function. PhD Thesis Dissertation, Washington State University (USA) Department of Chemistry. http://hdl.handle.net/2376/12995

  53. Corbin C, Drouet S, Markulin L et al (2018) A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation. Plant Mol Biol 97. https://doi.org/10.1007/s11103-018-0725-x

  54. Dalisay DS, Kim KW, Lee C et al (2015) Dirigent protein-mediated Lignan and cyanogenic glucoside formation in flax seed: integrated omics and MALDI mass spectrometry imaging. J Nat Prod 78:1231–1242. https://doi.org/10.1021/acs.jnatprod.5b00023

    Article  PubMed  CAS  Google Scholar 

  55. Ford JD, Huang KS, Wang HB et al (2001) Biosynthetic pathway to the cancer chemopreventive secoisolariciresinol diglucoside-hydroxymethyl glutaryl ester-linked lignan oligomers in flax (Linum usitatissimum) seed. J Nat Prod 64:1388–1397

    Article  CAS  Google Scholar 

  56. Hano C, Martin I, Fliniaux O et al (2006) Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224:1291–1301. https://doi.org/10.1007/s00425-006-0308-y

    Article  PubMed  CAS  Google Scholar 

  57. von Heimendahl CBI, Schäfer KM, Eklund P et al (2005) Pinoresinol–lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. Phytochemistry 66:1254–1263. https://doi.org/10.1016/j.phytochem.2005.04.026

    Article  CAS  Google Scholar 

  58. Hemmati S, Von Heimendahl CBI, Klaes M et al (2010) Pinoresinol-Lariciresinol reductases with opposite Enantiospecificity determine the enantiomeric composition of Lignans in the different organs of Linum usitatissimum L. Planta Med 76:928–934

    Article  CAS  Google Scholar 

  59. Corbin C, Drouet S, Mateljak I et al (2017) Functional characterization of the pinoresinol–lariciresinol reductase-2 gene reveals its roles in yatein biosynthesis and flax defense response. Planta 246:1–16. https://doi.org/10.1007/s00425-017-2701-0

    Article  CAS  Google Scholar 

  60. Suzuki S, Umezawa T, Shimada M (2002) Stereochemical diversity in Lignan biosynthesis of Arctium lappa L. Biosci Biotechnol Biochem 66:1262–1269. https://doi.org/10.1271/bbb.66.1262

    Article  PubMed  CAS  Google Scholar 

  61. Kim Y, Kim S-B, You Y-J, Ahn B-Z (2002) Deoxypodophyllotoxin; the cytotoxic and antiangiogenic component from Pulsatilla koreana. Planta Med 68:271–274. https://doi.org/10.1055/s-2002-23140

    Article  PubMed  CAS  Google Scholar 

  62. Xia ZQ, Costa MA, Proctor J et al (2000) Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55:537–549. https://doi.org/10.1016/S0031-9422(00)00242-9

    Article  PubMed  CAS  Google Scholar 

  63. Kim KW, Smith CA, Daily MD et al (2015) Trimeric structure of (+)-pinoresinol-forming dirigent protein at 1.95 A° resolution with three isolated active sites. J Biol Chem 290:1308–1318. https://doi.org/10.1074/jbc.M114.611780

    Article  PubMed  CAS  Google Scholar 

  64. Gasper R, Effenberger I, Kolesinski P et al (2016) Dirigent protein mode of action revealed by the crystal structure of AtDIR6. Plant Physiol 172:2165–2175. https://doi.org/10.1104/pp.16.01281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Dinkova-Kostova AT, Gang DR, Davin LB et al (1996) (+)-Pinoresinol/(+)-Lariciresinol reductase from Forsythia intermedia. J Biol Chem 271:29473–29482. https://doi.org/10.1074/jbc.271.46.29473

    Article  PubMed  CAS  Google Scholar 

  66. Corbin C, Drouet S, Mateljak I et al (2017) Functional characterization of the pinoresinol–lariciresinol reductase-2 gene reveals its roles in yatein biosynthesis and flax defense response. Planta:1–16. https://doi.org/10.1007/s00425-017-2701-0

  67. Bayindir Ü, Alfermann AW, Fuss E (2008) Hinokinin biosynthesis in Linum corymbulosum Reichenb. Plant J 55:810–820. https://doi.org/10.1111/j.1365-313X.2008.03558.x

    Article  PubMed  CAS  Google Scholar 

  68. Renouard S, Tribalatc M, Lamblin F et al (2014) RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat : consequences on lignans and neolignans accumulation. J Plant Physiol 171:1372–1377. https://doi.org/10.1016/j.jplph.2014.06.005

    Article  PubMed  CAS  Google Scholar 

  69. Fujita M, Gang DR, Davin LB, Lewis NG (1999) Recombinant Pinoresinol-Lariciresinol reductases from Western red cedar (Thuja plicata) catalyze opposite Enantiospecific conversions. J Biol Chem 274:618–627. https://doi.org/10.1074/jbc.274.2.618

    Article  PubMed  CAS  Google Scholar 

  70. Hemmati S, Schmidt TJ, Fuss E (2007) (+)-Pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett 581:603–610. https://doi.org/10.1016/j.febslet.2007.01.018

    Article  PubMed  CAS  Google Scholar 

  71. Nakatsubo T, Mizutani M, Suzuki S et al (2008) Characterization of Arabidopsis thaliana Pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J Biol Chem 283:15550–15557. https://doi.org/10.1074/jbc.M801131200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Min T, Kasahara H, Bedgar DL et al (2003) Crystal structures of Pinoresinol-Lariciresinol and Phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J Biol Chem 278:50714–50723. https://doi.org/10.1074/jbc.M308493200

    Article  PubMed  CAS  Google Scholar 

  73. Davin LB, Lewis NG (2003) An historical perspective on lignan biosynthesis: monolignol, allylphenol and hydroxycinnamic acid coupling and downstream metabolism. Phytochem Rev 2:257–288. https://doi.org/10.1023/B:PHYT.0000046175.83729.b5

    Article  CAS  Google Scholar 

  74. Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390. https://doi.org/10.1023/B:PHYT.0000045487.02836.32

    Article  CAS  Google Scholar 

  75. Umezawa T, Davin LB, Lewis NG (1991) Formation of lignans (−)-secoisolariciresinol and (−)-matairesinol with Forsythia intermedia cell-free extracts. J Biol Chem 266:10210–10217

    PubMed  CAS  Google Scholar 

  76. Xia Z-Q, Costa MA, Pélissier HC et al (2001) Secoisolariciresinol dehydrogenase purification, cloning, and functional expression. J Biol Chem 276:12614–12623. https://doi.org/10.1074/jbc.M008622200

    Article  PubMed  CAS  Google Scholar 

  77. Youn B, Moinuddin SG, Davin LB et al (2005) Crystal structures of apo-form and binary/ternary complexes of Podophyllum secoisolariciresinol dehydrogenase, an enzyme involved in formation of health-protecting and plant defense lignans. J Biol Chem 280:12917–12926. https://doi.org/10.1074/jbc.M413266200

    Article  PubMed  CAS  Google Scholar 

  78. Suzuki S, Sakakibara N, Umezawa T, Shimada M (2002) Survey and enzymatic formation of lignans of Anthriscus sylvestris. J Wood Sci 48:536–541. https://doi.org/10.1007/BF00766653

    Article  CAS  Google Scholar 

  79. Moinuddin SGA, Tfaily M, Cort JR, Smith CA, Hano C, Davin LB, Lewis NG (2020) Linum lignans and their associated biochemical pathways in human health and plant defense. In: Christopher Cullis (ed) Genetics and Genomics of Linum. Volume 23 of the Plant Genetics and Genomics: Crops and Models Springer International Publishing (ISBN 978-3-030-23964-0), pp 167–193. https://doi.org/10.1007/978-3-030-23964-0. Springer Nature Switzerland AG 2019

  80. Sakakibara N, Suzuki S, Umezawa T, Shimada M (2003) Biosynthesis of yatein in Anthriscus sylvestris. Org Biomol Chem 1:2474–2485. https://doi.org/10.1039/b304411d

    Article  PubMed  CAS  Google Scholar 

  81. Ragamustari SK, Nakatsubo T, Hattori T et al (2013) A novel O-methyltransferase involved in the first methylation step of yatein biosynthesis from matairesinol in Anthriscus sylvestris. Plant Biotechnol 30:375–384. https://doi.org/10.5511/plantbiotechnology.13.0527b

    Article  CAS  Google Scholar 

  82. Marques JV, Kim K-W, Lee C et al (2013) Next generation sequencing in predicting gene function in Podophyllotoxin biosynthesis. J Biol Chem 288:466–479. https://doi.org/10.1074/jbc.M112.400689

    Article  PubMed  CAS  Google Scholar 

  83. Lau W, Sattely ES (2015) Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science (80- ) 349:1224–1228. https://doi.org/10.1126/science.aac7202

    Article  CAS  Google Scholar 

  84. Henges A (1999) Biosynthese und Kompartimentierung von Lignanen in Zellkulturen von Linum album. Dissertation, Heinrich-Heine-Universität Düsseldorf

    Google Scholar 

  85. Federolf K, Alfermann a W, Fuss E (2007) Aryltetralin-lignan formation in two different cell suspension cultures of Linum album: deoxypodophyllotoxin 6-hydroxylase, a key enzyme for the formation of 6-methoxypodophyllotoxin. Phytochemistry 68:1397–1406. https://doi.org/10.1016/j.phytochem.2007.02.031

    Article  PubMed  CAS  Google Scholar 

  86. Renouard S, Corbin C, Lopez T et al (2012) Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds. Planta 235:85–98. https://doi.org/10.1007/s00425-011-1492-y

    Article  PubMed  CAS  Google Scholar 

  87. Corbin C, Renouard S, Lopez T et al (2013) Identification and characterization of cis-acting elements involved in the regulation of ABA- and/or GA-mediated LuPLR1 gene expression and lignan biosynthesis in flax (Linum usitatissimum L.) cell cultures. J Plant Physiol 170:516–522. https://doi.org/10.1016/j.jplph.2012.11.003

    Article  PubMed  CAS  Google Scholar 

  88. Markulin L, Drouet S, Corbin C et al (2019) The control exerted by ABA on lignan biosynthesis in flax (Linum usitatissimum L.) is modulated by a Ca 2+ signal transduction involving the calmodulin-like LuCML15b. J Plant Physiol 236:74–87. https://doi.org/10.1016/j.jplph.2019.03.005

    Article  PubMed  CAS  Google Scholar 

  89. Corbin C, Decourtil C, Marosevic D et al (2013) Role of protein farnesylation events in the ABA-mediated regulation of the Pinoresinol-Lariciresinol reductase 1 (LuPLR1) gene expression and lignan biosynthesis in flax (Linum usitatissimum L.). Plant Physiol Biochem 72:96–111. https://doi.org/10.1016/j.plaphy.2013.06.001

    Article  PubMed  CAS  Google Scholar 

  90. Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34:67–75. https://doi.org/10.1046/j.1365-313X.2003.01707.x

    Article  PubMed  CAS  Google Scholar 

  91. Bomal C, Bedon F, Caron S et al (2008) Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. J Exp Bot 59:3925–3939. https://doi.org/10.1093/jxb/ern234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zhao Q, Zeng Y, Yin Y et al (2015) Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis. Phytochemistry 112:170–178. https://doi.org/10.1016/j.phytochem.2014.07.008

    Article  PubMed  CAS  Google Scholar 

  93. Kumar P, Sharma R, Jaiswal V, Chauhan RS (2016) Identification, validation, and expression of ABC transporters in Podophyllum hexandrum and their role in podophyllotoxin biosynthesis. Biol Plant 60:452–458. https://doi.org/10.1007/s10535-016-0611-9

    Article  CAS  Google Scholar 

  94. Chen R, Li Q, Tan H et al (2015) Gene-to-metabolite network for biosynthesis of lignans in MeJA-elicited Isatis indigotica hairy root cultures. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00952

  95. Ma R, Xiao Y, Lv Z et al (2017) AP2/ERF transcription factor, Ii049, positively regulates Lignan biosynthesis in Isatis indigotica through activating salicylic acid signaling and Lignan/lignin pathway genes. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01361

  96. Wankhede DP, Biswas DK, Rajkumar S, Sinha AK (2013) Expressed sequence tags and molecular cloning and characterization of gene encoding pinoresinol/lariciresinol reductase from Podophyllum hexandrum. Protoplasma 250:1239–1249. https://doi.org/10.1007/s00709-013-0505-z

    Article  PubMed  CAS  Google Scholar 

  97. Oliva A, Moraes RM, Watson SB et al (2002) Aryltetralin Lignans inhibit plant growth by affecting the formation of mitotic microtubular organizing centers. Pestic Biochem Physiol 72:45–54. https://doi.org/10.1006/pest.2002.2582

    Article  CAS  Google Scholar 

  98. Bhattacharyya D, Sinha R, Hazra S et al (2013) De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum. BMC Genomics 14:748. https://doi.org/10.1186/1471-2164-14-748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. van Fürden B, Humburg A, Fuss E (2005) Influence of methyl jasmonate on podophyllotoxin and 6-methoxypodophyllotoxin accumulation in Linum album cell suspension cultures. Plant Cell Rep 24:312–317. https://doi.org/10.1007/s00299-005-0954-8

    Article  PubMed  CAS  Google Scholar 

  100. Yousefzadi M, Sharifi M, Behmanesh M et al (2010) Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis. Biotechnol Lett 32:1739–1743. https://doi.org/10.1007/s10529-010-0343-4

    Article  PubMed  CAS  Google Scholar 

  101. Esmaeilzadeh Bahabadi S, Sharifi M, Behmanesh M et al (2012) Time-course changes in fungal elicitor-induced lignan synthesis and expression of the relevant genes in cell cultures of Linum album. J Plant Physiol 169:487–491. https://doi.org/10.1016/j.jplph.2011.12.006

    Article  PubMed  CAS  Google Scholar 

  102. Tahsili J, Sharifi M, Safaie N et al (2014) Induction of lignans and phenolic compounds in cell culture of Linum album by culture filtrate of Fusarium graminearum. J Plant Interact 9:412–417. https://doi.org/10.1080/17429145.2013.846419

    Article  Google Scholar 

  103. Hano C, Addi M, Bensaddek L et al (2006) Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. Planta 223:975–989. https://doi.org/10.1007/s00425-005-0156-1

    Article  PubMed  CAS  Google Scholar 

  104. Hano C, Addi M, Fliniaux O et al (2008) Molecular characterization of cell death induced by a compatible interaction between Fusarium oxysporum f. sp. linii and flax (Linum usitatissimum) cells. Plant Physiol Biochem 46:590–600. https://doi.org/10.1016/j.plaphy.2008.02.004

    Article  PubMed  CAS  Google Scholar 

  105. Markulin L, Corbin C, Renouard S et al (2019) Characterization of LuWRKY36, a flax transcription factor promoting secoisolariciresinol biosynthesis in response to Fusarium oxysporum elicitors in Linum usitatissimum L. hairy roots. Planta 250:347–366. https://doi.org/10.1007/s00425-019-03172-9

    Article  PubMed  CAS  Google Scholar 

  106. Mohagheghzadeh A, Gholami A, Hemmati S et al (2007) Root cultures of Linum species section Syllinum as rich sources of 6-methoxypodophyllotoxin. Zeitschrift fur Naturforsch Sect C J Biosci 62:43–49. https://doi.org/10.1515/znc-2007-1-208

    Article  CAS  Google Scholar 

  107. Berlin J, Bedorf N, Mollenschott C et al (1988) On the Podophyllotoxins of root cultures of Linum flavum. Planta Med 54:204–206. https://doi.org/10.1055/s-2006-962404

    Article  PubMed  CAS  Google Scholar 

  108. Berlin J, Wray V, Mollenschott C et al (1986) Formation of β-Peltatin-a methyl ether and coniferin by root cultures of Linum flavum. J Nat Prod 49:435–439. https://doi.org/10.1021/np50045a008

    Article  PubMed  CAS  Google Scholar 

  109. Konuklugil B, Schmidt TJ, Alfermann a W (2001) Accumulation of lignans in suspension cultures of Linum mucronatum ssp. armenum (Bordz.) Davis. Zeitschrift fur Naturforsch Sect C J Biosci 56:1164–1165

    Article  CAS  Google Scholar 

  110. Konuklugil B (1998) Arytetralin lignans from Linum catharticum L. Biochem Syst Ecol 26:795–796

    Article  Google Scholar 

  111. Mohagheghzadeh A, Hemmati S, Alfermann AW (2006) Quantification of aryltetralin lignans in Linum album organs and in vitro cultures. Iran Assoc Pharm Sci 2:47–56

    Google Scholar 

  112. Van Uden W, Bouma AS, Bracht Waker JF et al (1995) The production of podophyllotoxin and its 5-methoxy derivative through bioconversion of cyclodextrin-complexed desoxypodophyllotoxin by plant cell cultures. Plant Cell Tissue Organ Cult 42:73–79. https://doi.org/10.1007/BF00037684

    Article  Google Scholar 

  113. Cong LH, Dauwe R, Lequart M et al (2015) Kinetics of glucosylated and non-glucosylated aryltetralin lignans in linum hairy root cultures. Phytochemistry 115:70–78. https://doi.org/10.1016/j.phytochem.2015.01.001

    Article  PubMed  CAS  Google Scholar 

  114. Renouard S, Corbin C, Drouet S et al (2018) Investigation of Linum flavum (L.) Hairy Root Cultures for the Production of Anticancer Aryltetralin Lignans. Int. J. Mol. Sci. 19: 990.https://doi.org/10.3390/ijms19040990

  115. Doussot J, Mathieu V, Colas C et al (2017) Investigation of the Lignan content in extracts from linum, Callitris and Juniperus species in relation to their in vitro Antiproliferative activities. Planta Med 83:574–581. https://doi.org/10.1055/s-0042-118650

    Article  PubMed  CAS  Google Scholar 

  116. Oostdam A, Mol JNM, van der LHW P (1993) Establishment of hairy root cultures of Linum flavum producing the lignan 5-methoxypodophyllotoxin. Plant Cell Rep 12:474–477. https://doi.org/10.1007/BF00234715

    Article  PubMed  CAS  Google Scholar 

  117. Lücking B (2001) Charakterisierung von Suspensionskulturen von Linum nodiflorum L. Universities of Marburg and Halle-Wittenberg, Halle

    Google Scholar 

  118. Wink M, Alfermann AW, Franke R et al (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genet Resour 3:90–100. https://doi.org/10.1079/PGR200575

    Article  CAS  Google Scholar 

  119. Samadi A, Jafari M, Nejhad N, Hossenian F (2014) Podophyllotoxin and 6-methoxy podophyllotoxin production in hairy root cultures of liunm mucronatum ssp. mucronatum. Pharmacogn Mag 10:154. https://doi.org/10.4103/0973-1296.131027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Chashmi NA, Sharifi M, Yousefzadi M et al (2013) Analysis of 6-methoxy podophyllotoxin and podophyllotoxin in hairy root cultures of Linum album Kotschy ex Boiss. Med Chem Res 22:745–752. https://doi.org/10.1007/s00044-012-0067-1

    Article  CAS  Google Scholar 

  121. Vasilev N, Ionkova I (2004) Lignan accumulation in cell cultures of linum strictum ssp. strictum L Acta Pharm 54:347–351

    PubMed  CAS  Google Scholar 

  122. Lalaleo L, Testillano P, Risueño M-C et al (2018) Effect of in vitro morphogenesis on the production of podophyllotoxin derivatives in callus cultures of Linum album. J Plant Physiol 228:47–58. https://doi.org/10.1016/j.jplph.2018.05.007

    Article  PubMed  CAS  Google Scholar 

  123. Pistelli L, Giovannini A, Ruffoni B et al (2010) Hairy root cultures for secondary metabolites production. In: Giardi MT, Rea G, Berra B (eds) Bio-farms for nutraceuticals: functional food and safety control by biosensors. Springer US, Boston, pp 167–184

    Chapter  Google Scholar 

  124. Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180:439–446. https://doi.org/10.1016/j.plantsci.2010.11.012

    Article  PubMed  CAS  Google Scholar 

  125. Lin HW, Kwok KH, Doran PM (2003) Development of Linum flavum hairy root cultures for production of coniferin. Biotechnol Lett 25:521–525. https://doi.org/10.1023/A:1022821600283

    Article  PubMed  CAS  Google Scholar 

  126. Renouard S, Corbin C, Colas C et al (2015) Aerial parts of Callitris species as a rich source of deoxypodophyllotoxin. Ind Crop Prod 63:53–57. https://doi.org/10.1016/j.indcrop.2014.10.055

    Article  CAS  Google Scholar 

  127. Balen B, Leljak-Levanic D, Mihaijević S et al (2004) Formation of embryogenic callus in hairy roots of pumpkin (Cucurbita pepo L.). Vitr Cell Dev Biol Plant 40:182–187. https://doi.org/10.1079/IVP2003516

    Article  Google Scholar 

  128. Wichers HJ, Harkes MP, Arroo RRJ (1990) Occurrence of 5-methoxypodophyllotoxin in plants, cell cultures and regenerated plants of Linum flavum. Plant Cell Tissue Organ Cult 23:93–100. https://doi.org/10.1007/BF00035828

    Article  CAS  Google Scholar 

  129. Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153. https://doi.org/10.1016/S0734-9750(02)00007-1

    Article  CAS  Google Scholar 

  130. Lopez T, Corbin C, Falguieres A et al (2016) Secondary metabolite accumulation, antibacterial and antioxidant properties of in vitro propagated Clidemia hirta L. extracts are influenced by the basal culture medium. Comptes Rendus Chim 19:1071–1076. https://doi.org/10.1016/j.crci.2016.03.012

    Article  CAS  Google Scholar 

  131. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127. https://doi.org/10.1111/j.1399-3054.1965.tb06874.x

    Article  CAS  Google Scholar 

  132. Gamborg OL, Miller RAA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. https://doi.org/10.1016/0014-4827(68)90403-5

    Article  PubMed  CAS  Google Scholar 

  133. Lloyd G, McCown B (1981) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  134. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  135. Ibrahim MH, Jaafar HZE, Rahmat A, Rahman ZA (2011) The relationship between phenolics and flavonoids production with total non structural carbohydrate and photosynthetic rate in Labisia pumila benth. Under high CO2 and nitrogen fertilization. Molecules 16:162–174. https://doi.org/10.3390/molecules16010162

    Article  CAS  Google Scholar 

  136. Baldi A, Srivastava AK, Bisaria VS (2008) Improved podophyllotoxin production by transformed cultures of Linum album. Biotechnol J 3:1256–1263. https://doi.org/10.1002/biot.200800173

    Article  PubMed  CAS  Google Scholar 

  137. Kadkade PG (1981) Growth and podophyllotoxin production in callus tissues of Podophyllum peltatum. Plant Sci Lett 25:107–115

    Article  Google Scholar 

  138. Schmitt J, Petersen M (2002) Influence of methyl jasmonate and coniferyl alcohol on pinoresinol and matairesinol accumulation in a Forsythia × intermedia suspension culture. Plant Cell Rep 20:885–889. https://doi.org/10.1007/s00299-001-0414-z

    Article  CAS  Google Scholar 

  139. van Uden W, Pras N, Homan B, Malingré TM (1991) Improvement of the production of 5-methoxypodophyllotoxin using a new selected root culture of Linum flavum L. Plant Cell Tissue Organ Cult 27:115–121. https://doi.org/10.1007/BF00041279

    Article  Google Scholar 

  140. Chattopadhyay S, Srivastava AK, Bhojwani SS, Bisaria VS (2001) Development of suspension culture of Podophyllum hexandrum for production of podophyllotoxin. Biotechnol Lett 23:2063–2066. https://doi.org/10.1023/A:1013704116860

    Article  CAS  Google Scholar 

  141. Chattopadhyay S, Srivastava AK, Bhojwani SS, Bisaria VS (2002) Production of podophyllotoxin by plant cell cultures of Podophyllum hexandrum in bioreactor. J Biosci Bioeng 93:215–220. https://doi.org/10.1016/S1389-1723(02)80017-2

    Article  PubMed  CAS  Google Scholar 

  142. Jamwal K, Bhattacharya S, Puri S (2018) Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J Appl Res Med Aromat Plants 9:26–38. https://doi.org/10.1016/j.jarmap.2017.12.003

    Article  Google Scholar 

  143. Narayani M, Srivastava S (2017) Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem Rev 16:1227–1252. https://doi.org/10.1007/s11101-017-9534-0

    Article  CAS  Google Scholar 

  144. Thakur M, Bhattacharya S, Khosla PK, Puri S (2019) Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants 12:1–12. https://doi.org/10.1016/j.jarmap.2018.11.004

    Article  Google Scholar 

  145. Halder M, Sarkar S, Jha S (2019) Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci elsc.201900058. https://doi.org/10.1002/elsc.201900058

  146. Eberhardt TL, Bernards MA, He L et al (1993) Lignification in cell suspension cultures of Pinus taeda: in situ characterization of a gymnosperm lignin. J Biol Chem 268:21088–21096

    PubMed  CAS  Google Scholar 

  147. Klessig DF, Malamy J (1994) The salicylic acid signal in plants. In: Palme K (ed) Signals and signal transduction pathways in plants. Springer Netherlands, Dordrecht, pp 203–222

    Chapter  Google Scholar 

  148. Guerriero G, Berni R, Muñoz-Sanchez J et al (2018) Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Genes (Basel) 9:309. https://doi.org/10.3390/genes9060309

    Article  CAS  Google Scholar 

  149. Rahman MMA, Dewick PM, Jackson DE, Lucas JA (1990) Biosynthesis of lignans in Forsythia intermedia. Phytochemistry 29:1841–1846. https://doi.org/10.1016/0031-9422(90)85025-B

    Article  CAS  Google Scholar 

  150. Edahiro J-I, Nakamura M, Seki M, Furusaki S (2005) Enhanced accumulation of anthocyanin in cultured strawberry cells by repetitive feeding of l-phenylalanine into the medium. J Biosci Bioeng 99:43–47. https://doi.org/10.1263/jbb.99.43

    Article  PubMed  CAS  Google Scholar 

  151. Van Uden W, Pras N, Malingré TM (1990) On the improvement of the podophyllotoxin production by phenylpropanoid precursor feeding to cell cultures of Podophyllum hexandrum royle. Plant Cell Tissue Organ Cult 23:217–224. https://doi.org/10.1007/BF00034435

    Article  Google Scholar 

  152. Beejmohun V, Fliniaux O, Hano C et al (2007) Coniferin dimerisation in lignan biosynthesis in flax cells. Phytochemistry 68. https://doi.org/10.1016/j.phytochem.2007.09.016

  153. Koulman A, Beekman AC, Pras N, Quax WJ (2003) The bioconversion process of Deoxypodophyllotoxin with Linum flavum cell cultures. Planta Med 69:739–744. https://doi.org/10.1055/s-2003-42785

    Article  PubMed  CAS  Google Scholar 

  154. Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461–477. https://doi.org/10.1007/s00299-011-1165-0

    Article  PubMed  CAS  Google Scholar 

  155. Walker TS, Bais HP, Grotewold E, Vivanco JM (2014) Update on root exudation and rhizosphere biology root exudation and rhizosphere biology. Plant Physiol 132:44–51. https://doi.org/10.1104/pp.102.019661.Although

    Article  Google Scholar 

  156. Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580:1183–1191. https://doi.org/10.1016/j.febslet.2005.12.009

    Article  PubMed  CAS  Google Scholar 

  157. Mohagheghzadeh A, Gholami A, Hemmati S, Dehshahri S (2008) Bag culture: a method for root-root co-culture. Zeitschrift für Naturforsch C 63:157–160. https://doi.org/10.1515/znc-2008-1-229

    Article  CAS  Google Scholar 

  158. Kim HJ, Ono E, Morimoto K et al (2009) Metabolic engineering of Lignan biosynthesis in Forsythia cell culture. Plant Cell Physiol 50:2200–2209. https://doi.org/10.1093/pcp/pcp156

    Article  PubMed  CAS  Google Scholar 

  159. Murata J, Matsumoto E, Morimoto K et al (2015) Generation of triple-transgenic Forsythia cell cultures as a platform for the efficient, stable, and sustainable production of Lignans. PLoS One 10:e0144519. https://doi.org/10.1371/journal.pone.0144519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Brown S, Clastre M, Courdavault V, O’Connor SE (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci 112:3205–3210. https://doi.org/10.1073/pnas.1423555112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from Ligue Contre le Cancer (IMPACT and Cell4LiFE grants).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Hano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mikac, S. et al. (2020). Bioproduction of Anticancer Podophyllotoxin and Related Aryltretralin-Lignans in Hairy Root Cultures of Linum Flavum L.. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics