Skip to main content

Secondary Metabolites of Various Eleuthero (Eleutherococcus senticosus/Rupr. et Maxim./Maxim) Organs Derived from Plants Obtained by Somatic Embryogenesis

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Abstract

Eleuthero is a thorny shrub native to Far East Asia, where for centuries it has been used as a medicinal plant. Due to strong adaptogenic activity, it has recently received considerable attention from both consumers and scientists. Although eleuthero is a rare, and in certain countries protected, species, its raw materials, i.e., underground organs, are still exclusively collected from natural sites. Thus, introduction into cultivation gives the chance for its survival in natural habitat. Note that eleuthero is characterized by a relatively low reproductive capacity; both generative and simple vegetative propagations are ineffective. The most efficient method to increase the reproductive potential of this plant on the purpose of its cultivation is application of in vitro techniques. In the case of eleuthero, the phenomenon of direct somatic embryogenesis is observed. The most effective explants for establishing the formation of somatic embryos are apical buds and hypocotyl fragments of plantlets obtained from extremely immature zygotic embryos that were isolated from seeds. In such cases, somatic embryos are directly formed on the explant tissues without the callus phase. Plants that are obtained from somatic embryos adapt relatively well to ex vitro conditions. In subsequent years of cultivation (4-year cycle), they can be an effective source of biologically active compounds, such as eleutherosides B and E, which have been used to standardize the raw material. The content of eleutherosides and other active compounds, such as phenolic acids, changes with the age of plants and depends on developmental phase of the plant, as well as on the plant organs (rhizomes, roots, shoots, or bark of these organs). The anatomical studies of plant tissues indicate that these compounds accumulate in the form of heterogeneous secretion in schizogenous reservoirs as well as in the vacuoles of epithelial and parenchymal cells of the secondary phloem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BA:

6-Benzyladenine (cytokinin)

DW:

Dry weight

EMA:

European Medicines Agency

ESCOP:

European Scientific Cooperative on Phytotherapy

hLf:

Human lactoferrin

HMPs:

Herbal medicinal products

HPLC:

High-performance liquid chromatography

LTB:

Escherichia coli heat-labile toxin

MS:

Murashige and Skoog medium

MS/B5:

Murashige and Skoog/Gamborg 5B medium

NAA:

1-Naphthaleneacetic acid (auxin)

PgSS1:

Panax ginseng squalene synthase gene

TCM:

Traditional Chinese Medicine

Tr.:

Trace amount

WHO:

World Health Organization

WR:

Without growth regulators

References

  1. Court WC (2000) Ginseng the genus Panax. OPA, Amsterdam

    Google Scholar 

  2. Davydov M, Krikorian AD (2000) Eleutherococcus senticosus (Rupr et Maxim) Maxim (Araliaceae) as an adaptogen a closer look. J Ethnopharmacol 72:345–393

    Article  CAS  Google Scholar 

  3. Panossian A, Wikman G, Wagner H (1999) Plant adaptogens III. Earlier and more recent aspects and concepts on their mode of action. Phytomedicine 6(4):287–300

    Article  CAS  Google Scholar 

  4. Borkowski B (1995) Żeń-szeń syberyjski. Wiadomości Zielarskie 37:6–8

    Google Scholar 

  5. Wagner H (1995) Immunostimulants and adaptogens from plants. In: Arnason JT, Mata RI, Roaeo JT (eds) Phytochemistry of medicinal plants. Plenum Press, New York

    Google Scholar 

  6. Pharmacopoeia of the People’s Republic of China (1997) Chemical Industry Press, Beijing

    Google Scholar 

  7. Shikov AN, Pozharitskaya ON, Markov VG, Wagner H, Verpoorte R, Heinrich M (2014) Medicinal plants of the Russian Pharmacopoeia; their history and applications. J Ethnopharmacol 154(3):481–536

    Article  Google Scholar 

  8. The Japanese Pharmacopoeia 17th (2016) The Ministry of Health, Labour and Welfare. https://www.mhlw.go.jp/file/06-Seisakujouhou-11120000-Iyakushokuhinkyoku/JP17_REV_1.pdf. Accessed 3 June 2019

  9. European Pharmacopoeia 8th (2014) Eleuthero roots – Eleutherococcus radix. European Directorate for the Quality of Medicines and Health Care, Council of Europe, Strasbourg

    Google Scholar 

  10. EMA (2014) Assessment report on Eleutherococcus senticosus (Rupr et Maxim) Maxim, radix. EMA/HMPC/680615/2013. Committee on Herbal Medicinal Products (HMPC)

    Google Scholar 

  11. WHO (2004) Radix Eleutherococci. In: WHO monographs on medicinal plants. https://apps.who.int/medicinedocs/en/d/Js4927e/10.html#Js4927e.10. Accessed 2 June 2019

  12. Kim CH, Sun BY (2004) Infrageneric classification of the genus Eleutherococcus Maxim (Araliaceae) with a new section Cissiflolius. J Plant Biol 47:282–288

    Article  Google Scholar 

  13. Lee YN (1997) Flora of Korea. Kyo-Hak Publishing, Seoul

    Google Scholar 

  14. Yu CY, Kim SH, Lim JD, Kim MJ, Chung IM (2003) Intraspecific analysis by DNA markers and in vitro cytotoxic and antioxidant activity in Eleutherococcus senticosus. Toxicol in Vitro 17:229–236

    Article  CAS  Google Scholar 

  15. Shrietier AC (1976) Svobodnojagodnik koljučij. In: Cikov PS (ed) Atlas arealov i resursov lekarstviennych rastienij SSSR. Gosudarstviennoe Izdatiel’stvo Medicinskoj Literatury, Moscow

    Google Scholar 

  16. Qibai X, Lowry PP (2007) Araliaceae. In: Flora of China, vol 13. Missouri Botanical Garden Press/Science Press, St. Louis/Beijing, pp 435–472

    Google Scholar 

  17. Ożarowski A, Rumińska A, Suchorska K, Węglarz Z (1990) Leksykon roślin leczniczych. PWRiL, Warsaw

    Google Scholar 

  18. Lin-De L, Zhong-Li W, Guo-Wie T, Jia-Heng S (1997) Observation on floral morphology and heteranthery of Eleutherococcus senticosus (Araliaceae). Acta Phytotax Sin 35(1):1–6

    Google Scholar 

  19. Lin-De L, Zhong-Li W, Guo-Wie T, Jia-Heng S (1998) The pollination biology of Eleutherococcus senticosus (Araliaceae). Acta Phytotax Sin 36(1):19–27

    Google Scholar 

  20. Tumiłowicz J, Banaszczak P (2006) Drzewa i krzewy z rodziny Araliaceae w Arboretum w Rogowie. Rocznik Dendrologiczny 54:35–50

    Google Scholar 

  21. Willuhn G (2004) Radix Eleutherococci. In: Wichtl M (ed) Herbal drugs and phytopharmaceuticals. Medpharm Scientific Publishers/CRC Press, Stuttgart/Boca Raton

    Google Scholar 

  22. Lin-De L, Zhong-Li W, Guo-Wie T, Jia-Heng S (1997) Studies on sexual reproduction and vegetative propagation of Eleutherococcus senticosus (Araliaceae). Acta Phytotax Sin 35(1):7–13

    Google Scholar 

  23. Zhu N, Wang YH (1992) Reproductive ecological studies of Acanthopanax senticosus (II) – seed dispersal, seed bank and recruitment. J Northeast For Univ 20:13–17

    Google Scholar 

  24. You XL, Choi YE, Yi JS (2005) Rapid in vitro germination of zygotic embryos via endosperm removal in Eleutherococcus senticosus. J Plant Biotechnol 7(1):75–80

    Google Scholar 

  25. Choi YE, Kim JW, Yoon ES (1999) High frequency of plant production via somatic embryogenesis from callus or cell suspension cultures in Eleutherococcus senticosus. Ann Bot 83:309–314

    Article  CAS  Google Scholar 

  26. Park HK, Park MS, Kim TS, Kim S, Choi KG, Park KH (1997) Characteristics of embryo growth and dehiscence during the after-ripening period in Eleutherococcus senticosus. Korean J Crop Sci 42:637–677

    Google Scholar 

  27. Isoda S, Shoji J (1994) Studies on cultivation of Eleutherococcus senticosus Maxim (II). On the germination and raising of seedling. Nat Med 48:75–81

    Google Scholar 

  28. Thiem B, Kikowska M (2008) The assurance of medicinal plants quality propagated in in vitro cultures. Herba Pol 54(4):168–178

    Google Scholar 

  29. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15(3):473–497

    Article  CAS  Google Scholar 

  30. Gamborg OL, Miller RA, Ojima K (1965) Nutrient requirements of suspension cultures of soybean cell cultures. Exp Cell Res 50:151–158

    Article  Google Scholar 

  31. Trigiano RN, Gray DJ, Conger BV, McDaniel JK (1989) Origin of direct somatic embryos from cultured leaf segments of Dactylis glomerata. Bot Gaz 150(1):72–77

    Article  Google Scholar 

  32. Ouiroz-Figueroa FR, Fuentes-Cerda CFJ, Rojas-Herrera R, Loyola-Vargas VM (2002) Histological studies on the developmental stages of two different somatic embryogenesis systems of Coffea Arabica. Plant Cell Rep 20:1141–1149

    Article  Google Scholar 

  33. Gogate SS, Nadgauda RS (2003) Direct somatic embryogenesis from immature zygotic embryo of cashewnut (Anacardium occidentale L.). Sci Hortic 97:75–82

    Article  CAS  Google Scholar 

  34. Ducos JP, Lambot C, Petiard V (2007) Bioreactors for coffee mass propagation by somatic embryogenesis. Int J Plant Dev Biol 1(1):1–12

    Google Scholar 

  35. Xiang LY, Xiao T, Jin LD, Yu HL, Yong EC (2012) Large scale somatic embryogenesis and regeneration of Panax notoginseng. Plant Cell Tissue Organ Cult 108:333–338

    Article  Google Scholar 

  36. Martin KP (2004) Plant regeneration through somatic embryogenesis in medicinally important Centella asiatica L. In Vitro Cell Dev Biol Plant 40:586–591

    Article  CAS  Google Scholar 

  37. Martin KP, Madassery J (2005) Direct and indirect somatic embryogenesis on cotyledon explants of Quassia amara L., an antileukaemic drug plant. In Vitro Cell Dev Biol Plant 41:54–57

    Article  Google Scholar 

  38. Paul S, Dam A, Bhattacharya A, Bandyopadhyay TK (2011) An efficient regeneration system via direct and indirect embryogenesis for the medicinal tree Murraya koenigii. Plant Cell Tissue Organ Cult 105:271–283

    Article  Google Scholar 

  39. Rao MM, Sita L (1996) Direct somatic embryogenesis from immature embryos of rosewood (Dalbergia latifolia Roxb). Plant Cell Rep 15:355–359

    Article  CAS  Google Scholar 

  40. Choi YE, Jeong JH (2002) Dormancy induction of somatic embryos of Siberian ginseng by high sucrose concentrations enhances the conservation of hydrated artificial seeds and dehydration resistance. Plant Cell Rep 20:1112–1116

    Article  CAS  Google Scholar 

  41. Shohael AM, Chakrabarty D, Yu KW, Hahn EJ, Peak K-Y (2005) Application of bioreactor system for large-scale production of Eleutherococcus somatic embryos in an air-lift bioreactor and production of eleutherosides. J Biotechnol 120:228–236

    Article  CAS  Google Scholar 

  42. Park S-Y, Ahn J-K, Lee W-Y, Murthy HN, Peak K-Y (2005) Mass production of Eleutherococcus koreanum plantlets via somatic embryogenesis from root cultures and accumulation of eleutherosides in regenerants. Plant Sci 168:1221–1225

    Article  CAS  Google Scholar 

  43. Shohael AM, Khatum SM, Hosakatte NM, Paek K-Y (2014) Production of bioactive compounds from somatic embryo suspension cultures of siberian ginseng in bioreactors. In: Peak K-Y (ed) Production of biomass and bioactive compounds using bioreactor technology. Springer, Dordrecht

    Google Scholar 

  44. Li CH, Lim JD, Heo K et al (2004) Long-term cold storage and plant regeneration of suspension cultured somatic embryos of Eleutherococcus senticosus Maxim. Korean J Med Crop Sci 12:494–499

    Google Scholar 

  45. Jung SJ, Yoon ES, Jeong JH et al (2004) Enhanced post-germinative growth of encapsulated somatic embryos of Siberian ginseng by carbohydrate addition to the encapsulation matrix. Plant Cell Rep 23:365–370

    Article  CAS  Google Scholar 

  46. Jo SH, Kwon SY, Kim JW, Lee KT, Kwak SS, Lee HS (2005) Transgenic Siberian ginseng cultured cells that produce high levels of human lactoferrin. Korean J Plant Biotechnol 32:209–215

    Article  Google Scholar 

  47. Jo SH, Kwon SY, Park DS et al (2006) High-yield production of functional human lactoferrin in transgenic cell cultures of Siberian ginseng (Acanthopanax senticosus). Biotechnol Bioprocess Eng 11:442

    Article  CAS  Google Scholar 

  48. Seo JW, Jeong JH, Shin CG et al (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66(8):869–877

    Article  CAS  Google Scholar 

  49. Kang TJ, Lee WS, Choi EG et al (2005) Mass production of somatic embryos expressing Escherichia coli heat-labile enterotoxin B subunit in Siberian ginseng. J Biotechnol 121:124–133

    Article  Google Scholar 

  50. Bączek K, Przybył JL, Kosakowska O, Węglarz Z (2017) Accumulation of phenolics in eleuthero (Eleutherococcus senticosus (Rupr. et Maxim.) Maxim.) as affected by plant development. Acta Sci Pol Hortorum Cultus 16(4):89–99

    Article  Google Scholar 

  51. Gui Y, Guo Z, Ke S, Skirvin RH (1991) Somatic embryogenesis and plant regeneration in Acanthopanax senticosus. Plant Cell Rep 9:514–516

    Article  CAS  Google Scholar 

  52. Fujikawa T, Yamaguchi A, Morita I, Takeda H, Nishibe S (1996) Protective effects of Acanthopanax senticosus Harms from Hokkaido and its components on gastric ulcer in restrained cold water stressed rats. Biol Pharm Bull 19(9):1227–1230

    Article  CAS  Google Scholar 

  53. Bączek K (2009) Accumulation of biologically active compounds in eleuthero (Eleutherococcus senticosus (Rupr. et Maxim.) Maxim.) grown in Poland. Herba Pol 55(1):7–13

    Google Scholar 

  54. Choi E-M, Ding Y, Huu TN et al (2008) Chiisanoside, a lupane triterpenoid from Acanthopanax leaves, stimulates proliferation and differentiation of osteoblastic MC3T3-E1 cells. Nat Prod Sci 14(1):21–26

    CAS  Google Scholar 

  55. Nishibe S, Kinoshita H, Takeda H, Okano G (1990) Phenolic compounds from stem bark of Acanthopanax senticosus and their pharmacological effect in chronic swimming stressed rats. Chem Pharm Bull 38(6):1763–1765

    Article  CAS  Google Scholar 

  56. Kohlmünzer S (2000) Farmakognozja. Podręcznik dla studentów farmacji. PZWL, Warsaw

    Google Scholar 

  57. Zgórka G, Kawka S (2001) Application of conventional UV, photodiode array (PDA) and fluorescence (FL) detection to analysis of phenolic acids in plant material and pharmaceutical preparations. J Pharm Biomed Anal 24:1065–1072

    Article  Google Scholar 

  58. Kurkin VA, Dubishchev AV, Ezhkov VN, Titova IN, Avdeeva EV (2006) Antidepressant activity of some phytopharmaceuticals and phenylpropanoids. Pharm Chem J 40(11):614–619

    Article  CAS  Google Scholar 

  59. Anetai M, Yamagishi T, Kaneshima H (1995) Determination of some constituents in Acanthopanax senticosus Harms. Differences among part, diameter, age, and harvest time. Report of the Hokkaido Institute of Public Health 45:63–65

    Google Scholar 

  60. Li X-C, Barnes DL, Khan IA (2001) A new lignan glycoside from Eleutherococcus senticosus. Planta Med 67:776–780

    Article  CAS  Google Scholar 

  61. Richter R, Hanssen H-P, Koening WA (2007) Essential oil composition of Eleutherococcus senticosus (Rupr et Maxim) Maxim roots. J Essent Oil Res 19:209–210

    Article  CAS  Google Scholar 

  62. Kim HM, Kim JS, Lee S, Lee S-J, Lee GP, Kang SS, Cho SH, Cheoi D-S (2006) Quantitative analysis of lignans in the fruits of Acanthopanax species by HPLC. Food Sci Biotech 15(5):776–780

    Google Scholar 

  63. Wagner H, Nörr H, Winterhoff M, Winterhoff H (1992) Drogen mit adaptogenwirkung zur stärkung der widerstandskräfte. Zeitschrift für Phytotherapie 13:42–54

    Google Scholar 

  64. Nielson AJ, Griffith WP (1978) Tissue fixation and staining with osmium tetroxide. The role of phenolic compounds. J Histochem Cytochem 26(2):138–140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Polish Ministry of Agriculture and Rural Development, grant no. N N310 312834

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenon Węglarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bączek, K., Pawełczak, A., Przybył, J.L., Kosakowska, O., Węglarz, Z. (2019). Secondary Metabolites of Various Eleuthero (Eleutherococcus senticosus/Rupr. et Maxim./Maxim) Organs Derived from Plants Obtained by Somatic Embryogenesis. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics