Skip to main content

Inertial Navigation Systems: Geodesy

  • Living reference work entry
  • First Online:
  • 778 Accesses

Definition

Geodesy :

The science of measuring the Earth using precise determinations of point coordinates.

Inertial navigation system :

A system that obtains real-time coordinates of a vehicle in motion using a set of accelerometers and gyroscopes.

Introduction

Geodesy can trace its origins as a science back to over 2200 years ago when Earth’s radius, hence its circumference, was first inferred by Eratosthenes (276–195 B.C.) from an astronomic measurement of the angle between two verticals on its curved surface located a measured distance apart (Torge, 2001). Refinements to this crude, but technically sound and essential, technique have been made since the late Renaissance (seventeenth century) to establish exquisitely detailed and accurate networks of surveyed coordinates of points all over the Earth. Today, the references that had oriented the vertical at a point, thus defining its coordinates in some fundamental coordinate system, namely, the sun and stars, are mostly replaced by...

This is a preview of subscription content, log in via an institution.

References and Reading

  • Annecchione, M. A., Keating, P., and Chouteau, M., 2006. Validating airborne vector gravimetry data for resource exploration. Geophysics, 71(6), 171–180.

    Article  Google Scholar 

  • Baroni, L., and Kuga, H. K., 2012. Analysis of attitude determination methods using GPS carrier phase measurements. Mathematical Problems in Engineering, 2012, 10.

    Article  Google Scholar 

  • Beeby, S., Ensell, G., Kraft, M., and White, N., 2004. MEMS Mechanical Sensors. Boston: Artech House.

    Google Scholar 

  • Britting, K. R., 1971. Inertial Navigation System Analysis. New York: Wiley Interscience/Wiley.

    Google Scholar 

  • Chow, W. W., Gea-Banacloche, J., Pedrotti, L. M., Sanders, V. E., Schleich, W., and Scully, M. O., 1985. The ring laser gyro. Reviews of Modern Physics, 57(1), 61–104.

    Article  Google Scholar 

  • Farrell, J. A., 2008. Aided Navigation: GPS with High Rate Sensors. New York: McGraw-Hill.

    Google Scholar 

  • Forsberg, R., and Olesen, A., 2010. Airborne gravity field determination, Chapter 3. In Xu, G. (ed.), Sciences of Geodesy – I. Berlin: Springer.

    Google Scholar 

  • Greenspan, R. L., 1996. GPS and inertial integration. In Parkinson, B. W., and Spilker, J. J. (eds.), Global Positioning System: Theory and Practice. Washington, DC: The American Institute of Aeronautics and Astronautics, Vol. II, pp. 187–220.

    Google Scholar 

  • Grejner-Brzezinska, D. A., 2001. Direct sensor orientation in airborne and land-based mapping applications. Report no. 461, Geodetic Science, Ohio State University. http://www.geology.osu.edu/~jekeli.1/OSUReports/reports/report_461.pdf.

  • Grejner-Brzezinska, D. A., Yi, Y., and Toth, C. K., 2001. Bridging GPS gaps in urban canyons, the benefits of ZUPTs. Navigation, 48, 216–226.

    Article  Google Scholar 

  • Grewal, M. S., Weill, L. R., and Andrew, A. P., 2007. Global Positioning, Inertial Navigation & Integration. New York: Wiley.

    Book  Google Scholar 

  • Gumert, W. R., 1998. An historical review of airborne gravimetry. The Leading Edge, 17(1), 113–116.

    Article  Google Scholar 

  • Jekeli, C., 2000. Inertial Navigation Systems with Geodetic Applications. Berlin: Walter de Gruyter.

    Google Scholar 

  • Karaim, M. O., Karamat, T. B., Noureldin, A., Tamazin, M., and Atia, M. M., 2013. Real-time cycle-slip detection and correction for land vehicle navigation using inertial aiding. In Proceedings of the 26th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, September 2013, pp. 1290–1298.

    Google Scholar 

  • Kayton, M., and Fried, W. R., 1997. Avionics Navigation Systems, 2nd edn. New York: Wiley.

    Book  Google Scholar 

  • Kreye, C., Hein, G. W., and Zimmerman, B., 2006. Evaluation of airborne vector gravimetry using GNSS and SDINS observations. In Flury, J., Rummel, R., Reigber, C., Rotacher, M., Boedecker, G., and Schreiber, U. (eds.), Observation of the Earth System from Space. Berlin: Springer, pp. 447–461.

    Chapter  Google Scholar 

  • Kwon, J. H., and Jekeli, C., 2001. A new approach for airborne vector gravimetry using GPS/INS. Journal of Geodesy, 74(10), 690–700.

    Article  Google Scholar 

  • Lawrence, A., 1998. Modern Inertial Technology. New York: Springer.

    Book  Google Scholar 

  • Lee, H. K., Wang, J. L., and Rizos, C., 2003. Effective cycle slip detection and identification for high precision GPS/INS integrated systems. Journal of Navigation, 56, 475–486.

    Article  Google Scholar 

  • Lefèvre, H., 1993. The Fiber-Optic Gyroscope. Boston: Artech House.

    Google Scholar 

  • Leick, A., 1995. GPS Satellite Surveying, 2nd edn. New York: Wiley.

    Google Scholar 

  • Murphy, C. A., 2004. The Air-FTG airborne gravity gradiometer system. In Lane, R. J. L. (ed.), Airborne Gravity 2004 – Abstracts from the ASEG-PESA Airborne Gravity 2004 Workshop, Geoscience Australia Record 2004/18, pp. 7–14.

    Google Scholar 

  • Parkinson, B. W., and Spilker, J. J. (eds.), 1996. Global Positioning System: Theory and Applications. Washington, DC: The American Institute of Aeronautics and Astronautics, Vol. I and II.

    Google Scholar 

  • Petit, G., and Luzum, B., 2010. IERS Conventions (2010). IERS Technical Note No. 36. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie.

    Google Scholar 

  • Post, E. J., 1967. Sagnac effect. Reviews of Modern Physics, 39(2), 475–493.

    Article  Google Scholar 

  • Schuler, M., 1923. Die Störung von Pendel und Kreiselapparaten durch die Beschleunigung des Fahrzeuges. Physikalische Zeitschrift, 24, 344.

    Google Scholar 

  • Schwarz, K. P., 1983. Inertial surveying and geodesy. Reviews of Geophysics and Space Physics, 21(4), 878–890.

    Article  Google Scholar 

  • Schwarz, K. P., Chapman, M. A., Cannon, M. E., and Gong, P., 1993. An integrated INS/GPS approach to the georeferencing of remotely sensed data. Photogrammetric Engineering and Remote Sensing, 59(11), 1667–1674.

    Google Scholar 

  • Schwarz, K. P., El-Sheimy, N., and Liu, Z., 1994. Fixing GPS cycle slips by INS/GPS – method and experience. In Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, 30 August 30 – 2 September, 1994, Banff, Canada, pp. 265–275.

    Google Scholar 

  • Schwarz, K. P., and El-Sheimy, N., 2007. Digital mobile mapping systems – state of the art and future trends. In Tao, C. V., and Li, J. (eds.), Advances in Mobile Mapping Technology. London: Taylor and Francis, pp. 3–18.

    Google Scholar 

  • Takasu, T., and Yasuda, A., 2008. Cycle slip detection and fixing by MEMS-IMU/GPS integration for mobile environment RTK-GPS. In Proceedings of ION GNSS 2008, 21st international technical meeting of the satellite division of the institute of navigation, Savannah, Georgia, pp. 64–71.

    Google Scholar 

  • Teunissen, P. J. G., 1995. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy, 70, 65–82.

    Article  Google Scholar 

  • Teunissen, P. J. G., and Kleusberg, A., 1998. GPS for Geodesy. Berlin: Springer.

    Book  Google Scholar 

  • Titterton, D. H., and Weston, J. L., 2004. Strapdown Inertial Navigation Technology, 2nd edn. Reston, VA/Stevenage/Herts, UK: The American Institute of Aeronautics and Astronautics/The Institution of Electrical Engineers.

    Book  Google Scholar 

  • Torge, W., 2001. Geodesy, 3rd edn. Berlin: Walter de Gruyter.

    Book  Google Scholar 

  • Tse, R., Gold, C., and Kidner, D., 2008. 3D city modelling from LIDAR data. In van Oosterom, P., Zlatanova, S., Penninga, F., and Fendel, E. (eds.), Advances in 3D Geoinformation Systems. Berlin: Springer, pp. 161–175.

    Chapter  Google Scholar 

  • Wehr, A., 2008. LIDAR: airborne and terrestrial sensors. In Li, Z., Chen, J., and Baltsavias, E. (eds.), Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008 ISPRS Congress Book. Boca Raton: CRC Press, pp. 73–84.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Jekeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Jekeli, C. (2015). Inertial Navigation Systems: Geodesy. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics